• 제목/요약/키워드: Transonic Compressor

검색결과 59건 처리시간 0.025초

삼차원 점성 효과를 고려한 축류 압축기의 성능에 대한 수치해석 (Numerical Analysis for the Performance of an Axial-flow Compressor with Three-Dimensional Viscous Effect)

  • 한용진;김광용;고성호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.182-187
    • /
    • 2003
  • Numerical analysis of three-dimensional vicous flow is used to compute the design speed operating line of a transonic axial-flow compressor. The Navier-Stokes equation was solved by an explicit finite-difference numerical scheme and the Baldwin-Lomax turbulence model was applied. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Two-stage axial compressor of a turboshaft engine developed KARI was chosen for the analysis. Numerical results show reasonably good agreements with experimental measurements made by KARI. Numerical solutions indicate that there exist a strong shock-boundary layer interaction and a subsequent large flow separation. It is also observed that the shock is moved ahead of the blade passage at near-stall condition.

  • PDF

Investigation on the Off Design Performance of a Transonic Compressor with Circumferential Grooves

  • Zhu, Jianhong;Piao, Ying;Zhou, Jianxing;Qi, Xingming
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.66-71
    • /
    • 2008
  • Two cases with circumferential grooves were designed for a transonic compressor, and 3-D numerical simulations were conducted for stall mechanism at three representative speeds. A conclusion can be drawn from the comparison between compressors with or without casing treatment that: with the rising of rotation speed, stall margin increases dramatically under the help of casing treatments, and the case with middle grooves has reasonable compromise between stall margin increment and efficiency cutting. At lower speed, the increment reduces, and grooves at the back of blade tip have more influence on stall margin. Further investigation shows there is a transition in mechanism of compressor stall with the decline of rotational speed: at high rotation speed, the expansion of stall margin mainly results from the suppression of tip leakage vortex by casing treatments, yet it benefits more from the depression of boundary layer separation from suction surface of blade tip.

  • PDF

정익 슈라우드 공기분사가 단단 천음속 축류압축기의 공력성능에 미치는 영향 (Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor)

  • 딩꽁쯔엉;마상범;김광용
    • 대한기계학회논문집B
    • /
    • 제41권1호
    • /
    • pp.9-19
    • /
    • 2017
  • 본 연구에서는 단단 천음속 축류압축기 정익부 슈라우드에 공기분사기를 설치하는 방안을 제시하고 이 것이 공력성능에 미치는 영향을 분석하기 위해 매개변수 연구를 수행하였다. 분사기의 곡률, 폭, 정익 앞전으로부터의 거리, 원주방향 각도 및 공기분사 비율을 변수로 선정하였고, 각 변수의 변화에 따른 공력성능 영향을 분석하기 위해 삼차원 레이놀즈평균 나비어-스톡스 방정식을 사용한 공력해석을 수행하였다. 매개변수 연구 결과, 정익 분사가 적용된 단단 축류압축기의 공력성능이 향상되었고, 공력성능이 공기분사 비율에 민감한 영향을 받는 것이 확인되었다. 원주방향 각도의 비율이 10%일 때 전압력비와 단열 효율이 가장 크게 향상되었다.

천음속 유동하의 압축기 익형에 대한 실험적 연구 (An Experimental Study of Compressor Section Profile in Transonic Flow)

  • 류영진
    • 한국추진공학회지
    • /
    • 제5권2호
    • /
    • pp.8-15
    • /
    • 2001
  • 터보기계의 효율 향상을 위한 끊임없는 노력에서 익형 형상 설계는 대단히 중요한 부분을 차지하고 있다. 이와 관련하여 천음속 풍동에서 층류 및 난류 경계층 거동(충격파-경계층 상호작용)에 대한 실험적 연구가 CTA 열전대 측정을 통해 이루어졌다. 압축기 익형에 부착된 열전대 실험 결과는 유동의 복잡성에 기인하는 신호의 불명확성 때문에 해석이 대단히 어려운 점이 있으므로 설계자에게 열전대 신호 특성에 대한 정확한 정보를 주기 위해서 다른 측정장치 결과와 비교 분석을 통한 해석기법 이 개발되었다.

  • PDF

A Comparative Study of Numerical Methods on Aerodynamic Characteristics of a Compressor Rotor at Near-stall Condition

  • Kim, Donghyun;Kim, Kuisoon;Choi, Jeongyeol;Son, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.157-164
    • /
    • 2015
  • The present work performs three-dimensional flow calculations based on Reynolds Averaged Navier-Stokes (RANS) and Delayed Detached Eddy Simulation (DDES) to investigate the flow field of a transonic rotor (NASA Rotor 37) at near-stall condition. It is found that the DES approach is likely to predict well the complex flow characteristics such as secondary vortex or turbulent flow phenomenon than RANS approach, which is useful to describe the flow mechanism of a transonic compressor. Especially, the DES results show improvement of predicting the flow field in the wake region and the model captures reasonably well separated regions compared to the RANS model. Besides, it is discovered that the three-dimensional vortical flows after the vortex breakdown from the rotor tip region are widely distributed and its vortex structures are clearly present. Near the rotor leading edge, a part of the tip leakage flows in DES solution spill over into next passage of the blade owing to the separation vortex flow and the backflow is clearly seen around the trailing edge of rotor tip. Furthermore, the DES solution shows strong turbulent eddies especially in the rotor hub, rotor tip section and the downstream of rotor trailing edge compared to the RANS solution.

3차원 천음속 원심압축기 디퓨져 성능연구 (Performance Analysis of Three-Dimensional Transonic Centrifugal Compressor Diffuser)

  • 김상덕;송동주
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.217-222
    • /
    • 1998
  • CSCM upwind flux difference splitting compressible Navier-Stokes method has been used to predict the transonic flows in centrifugal compressor diffuser. The modified cyclic TDMA and the mass flux boundary conditions were used as boundary conditions of the diffuser analysis. With the mass flux boundary condition and the $130{\times}80{\times}40$ grid, the compressible upwind Navier-Stokes method predicted the transonic diffuser flowfield successfully. Plow changes in the impeller exit region due to the strong interaction between impeller exit and vaned diffuser, broad flow separation on the suction surface near hub and shroud was observed from the results of the mass flow rates 6.0 and 6.2kg/s at 27000 rpm. The static pressure increased and the total pressure decreased through the flow passage of the channel diffuser, which were predicted better from the three-dimensional analysis than from the two-dimensional analysis due to the strong effect of the three-dimensional flow. The mass averaged loss coefficients and pressure coefficients were also studied.

  • PDF

상반각 정익이 천음속 축류 압축기 손실에 미치는 영향에 관한 연구 (Effect of the Dihedral Stator on the Loss in a Transonic Axial Compressor)

  • 황동하;최민석;백제현
    • 한국유체기계학회 논문집
    • /
    • 제18권5호
    • /
    • pp.5-12
    • /
    • 2015
  • This paper presents a numerical investigation of the effect of the dihedral stator on the loss in a transonic axial compressor. Four stator geometries with different stacking line variables are tested in the flow simulations over the whole operating range. It is found that a large shroud loss at the rotor outlet and the subsequent shroud corner separation in the stator passage occur at low mass flow rate. The hub dihedral stator and bowed blade generate unexpected hub-corner-separation, thereby causing a large total pressure loss over the entire operating range. However, the corresponding blockage forces the high momentum flow near the hub to divert toward the upper part of the passage suppressing the negative axial velocity region. The dihedral stator increases deflection angle and secondary vorticity near the endwall where the dihedral is applied. As a result, the endwall loss which is related to the endwall relative velocity decreases.

천음속 압축기 동익을 지나는 삼차원 유동의 수치해석 (Numerical Calculation of Three-Dimensional F1ow through A Transonic Compressor Rotor)

  • 이용갑;김광용
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1384-1391
    • /
    • 2001
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67) and to evaluate the performances of Abid's low-Reynolds-number k-$\omega$ and Baldwin-Lomax turbulence models. A finite volume method is used fur spatial discretization. The equations are solved implicitly in time by the use of approximate factorization. The upwind difference scheme is used for inviscid terms and viscous terms are approximated with central difference. The flux-difference-splitting method of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. The results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, it is concluded that Abid'k-$\omega$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost the same.

Effects of the Low Reynolds Number on the Loss Characteristics in a Transonic Axial Compressor

  • Choi, Min-Suk;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.202-212
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the loss characteristics in a transonic axial compressor, Rotor67. As a gas turbine becomes smaller in size and it is operated at high altitude, the operating condition frequently lies at low Reynolds number. It is generally known that wall boundary layers are thickened and a large separation occurs on the blade surface in axial turbomachinery as the Reynolds number decreases. In this study, it was found that the large viscosity did not affect on the bow shock at the leading edge but significantly did on the location and the intensity of the passage shock. The passage shock moved upstream towards leading edge and its intensity decreased at the low Reynolds number. This change had large effects on the performance as well as the internal flows such as the pressure distribution on the blade surface, tip leakage flow and separation. The total pressure rise and the adiabatic efficiency decreased about 3% individually at the same normalized mass flow rate at the low Reynolds number. In order to analyze this performance drop caused by the low Reynolds number, the total pressure loss was scrutinized through major loss categories such as profile loss, tip leakage loss, endwall loss and shock loss.

  • PDF

NASA Rotor 37 익형의 스윕각 최적화 (Optimization of Blade Sweep of NASA Rotor 37)

  • 장춘만;리핑;김광용
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.622-629
    • /
    • 2006
  • The shape optimization of blade sweep in a transonic axial compressor rotor of NASA Rotor 37 has been performed using response surface method and the three-dimensional Wavier-Stokes analysis. Two shape variables of the rotor blade, which are used to define the rotor sweep, are introduced to increase the adiabatic efficiency of the compressor. Throughout the optimization, optimal shape having a backward sweep is obtained. Adiabatic efficiency, which is the objective function of the present optimization, is successfully increased. Separation line due to the interference between a shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one. The increase in adiabatic efficiency for the optimized blade is caused by suppression of the separation due to a shock on the blade suction surface.