• Title/Summary/Keyword: Transmittance controlled mask

Search Result 3, Processing Time 0.019 seconds

Transmittance controlled photomasks by use of backside phase patterns (후면 위상 패턴을 이용한 투과율 조절 포토마스크)

  • Park, Jong-Rak;Park, Jin-Hong
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.79-85
    • /
    • 2004
  • We report on a transmittance controlled photomask with phase patterns on the back quartz surface. Theoretical analysis for changes in illumination pupil shape with respect to the variation of size and density of backside phase patterns and experimental results for improvement of critical dimension uniformity on a wafer by using the transmittance controlled photomask are presented. As phase patterns for controlling transmittance of the photomask we used etched contact-hole type patterns with 180" rotative phase with respect to the unetched region. It is shown that pattern size on the backside of the photomask must be made as small as possible in order to keep the illumination pupil shape as close as possible to the original pupil shape and to achieve as large an illumination intensity drop as possible at a same pattern density. The distribution of illumination intensity drop suitable for correcting critical dimension error was realized by controlling pattern density of the contact-hole type phase patterns. We applied this transmittance controlled photomask to a critical layer of DRAM (Dynamic Random Access Memory) having a 140nm design rule and could achieve improvement of the critical dimension uniformity value from 24.0 nm to 10.7 nm in 3$\sigma$.TEX>.

Application of Transmittance-Controlled Photomask Technology to ArF Lithography (투과율 조절 포토마스크 기술의 ArF 리소그래피 적용)

  • Lee, Dong-Gun;Park, Jong-Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.74-78
    • /
    • 2007
  • We report theoretical and experimental results for application of transmittance-controlled photomask technology to ArF lithography. The transmittance-controlled photomask technology is thought to be a promising technique fo critical dimension (CD) uniformity correction on a wafer by use of phase patterns on the backside of a photomask. We could theoretically reproduce experimental results for illumination intensity drop with respect to the variation of backside phase patterns by considering light propagation from the backside to the front side of a photomask at the ArF lithography wavelength. We applied the transmittance-controlled photomask technology to ArF lithography for a critical layer of DRAM (Dynamic Random Access Memory) having a 110-nm design rule and found that the in-field CD uniformity value was improved from 13.8 nm to 9.7 nm in $3{\sigma}$.

Study of ion beam shaping of an anode-type ion source coupled with a Whenelt mask

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.70-74
    • /
    • 2018
  • We fabricated an anode-type ion source driven by a charge repulsion mechanism and investigated its beam shape controlled by a Whenelt mask integrated at the front face of the source. The ion beam shape was observed to vary by changing the geometry of the Whenelt mask. As the angle of inclination of the Whenelt mask was varied from $40^{\circ}$ to $60^{\circ}$, the etched area at a thin film was reduced from 20 mm to 7.5 mm at the working distance of 286 mm, and the light transmittance through the etched surface was increased from 78% to 80%, respectively. In addition, for the step height difference, ${\Delta}$ between the inner mask and the outer mask of ${\Delta}=0$, -1 mm, and +1 mm, we observed the ion beam shape was formed to be collimated, diverged, and focused, respectively. The focal length of the focused beam was 269 mm. We approved experimentally a simple way of controlling the electric field of the ion beam by changing the geometry of the Whenelt mask such that the initial direction of the ion beam in the plasma region was manipulated effectively.