• Title/Summary/Keyword: Transmission system

Search Result 9,066, Processing Time 0.039 seconds

The Decision Algorithm for Driving Intension Using Moduled Neural Network (모듈화된 신경망을 이용한 운전의지 판단 알고리즘)

  • 강준영;김성주;김용택;서재용;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.709-714
    • /
    • 2001
  • Recently, most vehicles has the Automatic transmission system as their transmission system. The automatic transmission system operates with fixed shift patterns. In the opposite of manual operation, it is easy and convenient for driving. Though these merit, the system can not evaluate the driver s intension because of usage of fixed shift pattern. To consider driver s intension, we must consider both the driving intensity of driver and the status of vehicle. In this paper, we developed flexible automatic transmission system by using the proposed moduled neural networks which can learn the status of th vehicle and driver s intensity. As a results, we compare the transmission system using fixed shift pattern and the proposed transmission system and show the good performance in the change of shift position.

  • PDF

A Design of MGA-Pl Supplementary Controller in SVC for Power Oscillation Damping of HVDC Transmission System (초고압 직류송전 시스템의 전력 동요억제를 위한 정지형 무효전력 보상기에 MGA-PI 보조제어기 설계)

  • O, Tae-Gyu;Jeong, Hyeong-Hwan;Heo, Dong-Yeol;Lee, Jeong-Pil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.317-326
    • /
    • 2002
  • In this paper, a methodology for optimal PI supplementary controller using the modified genetic algorithm has been proposed to the oscillation damping in HDVC transmission system. These study processes are summarized as the formulation for load flow calculation in HVDC transmission system with SVC, the investigations on the basic control in HVDC system, the mathematical modeling for dynamic characteristics analyses, and the optimal design of MGA based PI controller generation the supplementary control signal of SVC. Its properties were verified through a series of computer simulations including dynamic stability. It means that the application of MGA-PI controller in HVDC transmission system can contribute the propriety to the improvement of the stability in HVDC transmission system and the design of MGA-OI controller has been proved indispensible when applied to HVDC transmission system.

A Mathematical Approach to Allocate the Contributions by Applying UPFCs to Transmission System Usage

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.158-163
    • /
    • 2005
  • Competitive electricity markets necessitate equitable methods for allocating transmission usage in order to set transmission usage charges and congestion charges in an unbiased and an open-accessed basis. So in competitive markets it is usually necessary to trace the contribution of each participant to line usage, congestion charges and transmission losses, and then to calculate charges based on these contributions. A UPFC offers flexible power system control, and has the powerful advantage of providing, simultaneously and independently, real-time control of voltage, impedance and phase angle, which are the basic power system parameters on which sys-tem performance depends. Therefore, UPFC can be used efficiently and flexibly to optimize line utilization and increase system capability and to enhance transmission stability and dampen system oscillations. In this paper, a mathematical approach to allocate the contributions of system users and UPFCs to transmission system usage is presented. The paper uses a dc-based load flow modeling of UPFC-inserted transmission lines in which the injection model of the UPFC is used. The relationships presented in the paper showed modified distribution factors that modeled impact of utilizing UPFCs on line flows and system usage. The derived relationships show how bus voltage angles are attributed to each of changes in generation, injections of UPFC, and changes in admittance matrix caused by inserting UPFCs in lines. The relationships derived are applied to two test systems. The results illustrate how transmission usage would be affected when UPFC is utilized. The relationships derived can be adopted for the purpose of allocating usage and payments to users of transmission network and owners of UPFCs used in the network. The relationships can be modified or extended for other control devices.

  • PDF

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.

A Study on Installation of Monitoring System of Wireless Power Transmission System (무선전력전송 시스템의 모니터링 시스템 구축에 관한 연구)

  • Song, Young-Sang;Han, Woon-Ki;Jung, Jin-Soo;Lim, Hyun-Sung;Cho, Sung-Koo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.47-53
    • /
    • 2015
  • The electrical safety and efficiency is the most important thing of the electric vehicle charging system. The prior system is contact charging system that is contacted directly by human. So, it has riskiness such as electric shock in the case of poor insulation or contact problems. To solve these safety issues and the convenience problems, a wireless power transmission system has been developed and is currently in trial operation. However, because high frequency is used in wireless power transmission system instead of commercial frequency, we need to apply protection measures concerning electric shock and equipment protection. Also, it should be accompanied by measuring efficiency for the effective operation of the wireless power transmission system. Therefore, we structured monitoring system in trial operation area of wireless power transmission system and applied decision algorithm for protection of human and equipment and economic operation of it.

Design of MAGLEV Information Transmission System by Radio Inductive Loop (유도무선루프에 의한 자기부상열차 정보전송 시스템의 설계)

  • An, Sang-Gwon;Park, Seok-Ha;Park, Jeong-Su;Kim, Jong-Beom;Kim, Yang-Mo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 1999
  • This paper presents the information transmission between on-board and ground-site in MAGLEV. considering safety and high speed operation and density operation, information transmission between them is necessary. Therefore it is necessary for transmission system to ensure high speed transmission, low error rate, massive information, and reliability of information. To provide above conditions, 1.1km signal line assembly was constructed and Frequency Shift Keying(FSK) modulation and Open System Interconnection(OSI) based high-level data link control(HDLC) protocol are applied. To modulate digital signal for transmission from ground-site to on-board, carrier frequency of 70kHz is used and 90khz is used for transmission from on-board to ground-site. Transmission speed is 2400bps for consideration of train speed, quantity of information, and data error rate. And this paper introduces information monitoring considering user interface and presents the method for an effective data transmission in MAGLEV which is now being tested and intends to provide for an intelligent train operation system in future.

  • PDF

Study on the Estimation of Seasonal Ambient Current for the Application of Ambient Adjusted Line Rating(AAR) in Overhead Transmission Lines Using Risk Tolerance(RT) Method (가공송전선로의 AAR 적용 시 Risk Tolerance 분석을 이용한 계절별 최대 허용전류 산정 및 적용에 관한 연구)

  • Lee, Jaegul;Bae, Youngjae;Song, Jiyoung;Shin, Jeonghoon;Kim, Yonghak;Kim, Taekyun;Yoon, Yongbeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.7-15
    • /
    • 2017
  • Ambient Adjusted line Rating(AAR) method for overhead transmission lines considering Risk Tolerance(RT) was proposed in this paper. AAR is suitable for system operators to plan their operation strategy and maintenance schedule because this can be designed as a seasonal line rating. Several candidate transmission lines are chosen to apply the proposed method in the paper. As a result, it is shown that system reliability was significantly enhanced through maximizing transfer capability, solving the system constraints.

Setting Considerations of Distance Relay for Transmission Line with STATCOM

  • Zhang, Wen-Hao;Lee, Seung-Jae;Choi, Myeon-Song
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.522-529
    • /
    • 2010
  • Distance relay plays an important role in the protection of transmission lines. The application of flexible AC transmission systems (FACTS) devices, such as the static synchronous compensator (STATCOM), could affect the performance of the distance relay because of compensation effect. This paper analyzes the application of distance relay on the protection of a transmission line containing STATCOM. New setting principles for different protection zones are proposed based on this analysis. A typical 500 kV transmission system employing STATCOM is modeled using Matlab/Simulink. The impact of STATCOM on distance protection scheme is studied for different fault types, fault locations, and system configurations. Based on simulation results, the performance of distance relay is evaluated. The setting principle can be verified for the transmission line with STATCOM.

Probabilistic Technique for Power System Transmission Planning Using Cross-Entropy Method (Cross-Entropy를 이용한 전력계통계획의 확률적 기법 연구)

  • Lee, Jae-Hee;Joo, Sung-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2136-2141
    • /
    • 2009
  • Transmission planning is an important part of power system planning to meet an increasing demand for electricity. The objective of transmission expansion is to minimize operational and construction costs subject to system constraints. There is inherent uncertainty in transmission planning due to errors in forecasted demand and fuel costs. Therefore, transmission planning process is not reliable if the uncertainty is not taken into account. The paper presents a systematic method to find the optimal location and amount of transmission expansion using Cross-Entropy (CE) incorporating uncertainties about future power system conditions. Numerical results are presented to demonstrate the performance of the proposed method.

Primary Restorative Transmission Line Selection for Myanmar's Electric Power System

  • Kim, Yong-Hak;Song, In-Jun;Jang, Byung-Tae;An, Yong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • Power system restoration following a massive or complete blackout starts with energizing the primary restorative transmission system. During this primary restoration process, unexpected overvoltage may happen due to nonlinear interaction between the unloaded transformer and the transmission system. In the case of the Myanmar electric power system, there are so many wide outage experiences, including complete blackout cases, caused by 230kV line faults and so on. Consequently, Myanmar's system operators have been well trained to deal with wide blackouts. Howver, system blackout restoration has been conducted by relying on the experience of only a few specialists. So, more scientific analysis is required to meet the requirements necessary to ensure fast and reliable system restoration. This paper presents analytical results on the primary restorative transmission system of Myanmar, focusing on the problems during the early restoration process. Methodologies are presented that handle load pick-up, terminal voltage and the reactive capability limitation of black-start generators to compensate the Ferranti effect. Static and dynamic simulation with the PSSolution and EMTDC programs respectively for the six cases are performed in order to select the primary restorative transmission lines.