• Title/Summary/Keyword: Transmission line theory

Search Result 191, Processing Time 0.026 seconds

Anaysis and design of inhomogeneous optical filters using tapered transmission line theory (테이퍼 전송선 원리를 이용한 불균일 굴절률 광여파기의 해석 및 설계)

  • 권영재;장호성;임성규;오명환
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.9
    • /
    • pp.36-42
    • /
    • 1997
  • Optical filters with graded index profiles are designed by applying the fourier transform to a riccati equation which governs the reflection and transmission characteristics of inhomogeneous refractive index distributions. The inhomogeneous refractive index profile of an optical filter with specified target spectrum is obtained through iterations. The spectra response of the inhomogeneous refractive index layers are analyzed by using runge-dutta numerical method to solve the differential euations of the amplitude and the phase of reflection coefficient derived from the riccati equation and the results are in good agreement with the resutls obtained by using matrix method.

  • PDF

A Study on the Analysis of Coaxial Collinear Antennas for Base Station of Mobile Communications (이동통신 기지국용 동축 코리니아 안테나의 해석에 관한 연구)

  • 임성빈;최학근
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.40-47
    • /
    • 1993
  • In this paper, a method for analyzing coaxial collinear antenna for base station of mobile communications using the moment method and the transmission line theory is presented. The excited voltages at the junctions between elements are expressed as the matrix with transmission parameters and these voltages are applied to the integral equation for calculating current distribution. Here, the current distributions, input admittances, radiation patterns and gains are calculated. Calculated values of the current distributions and the input admittances show good agreement with measured values. In case of beamtilted collinear antenna, radiation pattern is simialar to measured result except side lobe.

  • PDF

Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures (샌드위치 구조의 전자기파 흡수체 제작 및 전자기적 특성)

  • Park Ki-Yeon;Lee Sang-Eui;Han Jae-hung;Kim Chun-Gon;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.131-134
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band $(8.2\~12.4GHz)$ frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane (PU) foams containing multi­walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.

  • PDF

A Study on the Voltage - Reactive Power Control Considering Fuzziness (FUZZY정도를 고려한 전압-무효전력제어에 관한 연구)

  • Song, K.Y.;Cho, J.W.;Lee, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.31-34
    • /
    • 1991
  • This paper presents a voltage-reactive power control algorithm considering fuzziness. In this paper, a coordination technique based on fuzzy set theory is applied for system loss-voltage compromises. Here, we introduce membership functions to measure the adaptability of real power loss of transmission line and the deviation of load bus voltage from the constraints. Then the optimization of problem is solved by a linear programming technique considering the fuzzy set theory. The objective is a degree of satisfaction about the fuzzy decision-making function. The effectiveness of this algorithm has been verified by testing on sample systems.

  • PDF

HEISENBERG GROUPS - A UNIFYING STRUCTURE OF SIGNAL THEORY, HOLOGRAPHY AND QUANTUM INFORMATION THEORY

  • Binz, Ernst;Pods, Sonja;Schempp, Walter
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.1-57
    • /
    • 2003
  • Vector fields in three-space admit bundles of internal variables such as a Heisenberg algebra bundle. Information transmission along field lines of vector fields is described by a wave linked to the Schrodinger representation in the realm of time-frequency analysis. The preservation of local information causes geometric optics and a quantization scheme. A natural circle bundle models quantum information visualized by holographic methods. Features of this setting are applied to magnetic resonance imaging.

A General Design Method for the Broadband Multi-Section Power Divider (광대역 다단 전력 분배기의 일반화된 설계 방법)

  • Park, Jun-Seok;Kim, Hyeong-Seok;Im, Jae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.2
    • /
    • pp.85-91
    • /
    • 2002
  • A novel multi-section power divider configuration is Proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a Planar multi-section three-Ports hybrid and a waveguide transformer design procedures. The multi∼section power divider is based on design theory of the optimum quarter- wave transformer Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode∼matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Simulation and experiment show excellent performance of multi section power divider.

Classify Layer Design for Navigation Control of Line-Crawling Robot : A Rough Neurocomputing Approach

  • Ahn, Taechon;Peters, James F.;Borkowski, Maciey
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.1-68
    • /
    • 2002
  • This paper considers a rough neurocomputing approach to the design of the classify layer of a Brooks architecture for a robot control system. The Paradigm for neurocomputing that has its roots in rough set theory, and works well in cases where there is uncertainty about the values of measurements used to make decisions. In the case of the line-crawling robot (LCR) described in this paper, rough neurocomputing is used to classify sometimes noisy signals from sensors. The LCR is a robot designed to crawl along high-voltage transmission lines where noisy sensor signals are common because of the electromagnetic field surrounding conductors. In rough neurocomputing, training a network of neurons...

  • PDF

Design of An Open-Ended Coaxial Cavity Resonator (한쪽 면이 열린 동축 공동 공진기의 설계에 대한 연구)

  • Lee, Yun-Min;Kim, Jin-Kook;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.201-208
    • /
    • 2013
  • This paper is a study of an empirical design of an open-ended coaxial cavity resonator. It can be done by using the radius of the inner conductor, the inner radius and the length of the resonator. However, the basic coaxial transmission -line theory can be seen that the characteristics of the resonant frequency and the Q value are varied by the change of length, regardless of the value of radius of the inner conductor and inner radius of the resonator. We find out the impact of radius of the inner conductor, inner radius of the resonator and the length of the resonator parameter and propose the optimized empirical resonator design method by reducing the error between the theoretical value and the design value. Based on the simulation, several resonators are fabricated by the size of 14 mm for the radius of inner conductor, 2 mm, 5 mm, 10 mm respectively for the inner radius of resonator, and 8.5 mm for the length of the resonator. The resonant frequencies of the produced resonators were measured at 6.1, 5.7, 6.5 GHz respectively. According to the result of simulation and measurement, we know that we can design the relatively exact open-ended coaxial cavity resonator by applying the basic coaxial transmission-line theory directly when the length of the resonator is less than 10 mm, and adding the correction factor of 0.5 GHz to the calculated resonant frequency in case of more than 10 mm of the length of the resonator.

Prediction of Impedance Characteristics of Multi-Layer Ceramic Capacitor Based on Coupled Transmission Line Theory (결합 전송선로 이론을 이용한 적층 세라믹 커패시터의 임피던스 특성 예측)

  • Jeon, Jiwoon;Kim, Jonghyeon;Pu, Bo;Zhang, Nan;Song, Seungjae;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.135-147
    • /
    • 2015
  • With the miniaturization and digitalization of electronics industry, demand for Multi-Layer Ceramic Capacitor(MLCC) has increased steadily because of its various applications such as DC Blocking, Decoupling and Filtering etc. The modeling techniques of MLCC has been studied for a long time but most of these modeling method can only be applied after measurement and this has some losses of material, time in both production stage and measurement stage. This paper proposes the modeling method which can predict the frequency characteristics of MLCC from structure data and material data in design stage. The impedance of N-Layer Capacitor can be expressed in differential mathematical form based on coupled transmission line equations. By using this formula, we can predict the impedance of MLCC. As a result, proposed modeling is correspond with simulation, and it takes much less time to obtain the result than the simulation.

Design of Transmission Gear Machining Line for Developing Countries Based on Thinking Process and Simulation Method (사고 프로세스와 시뮬레이션 기법 기반의 저임금국가에 적합한 변속기 기어가공라인의 설계)

  • Park, Hong-Seok;Park, Jin-Woo;Choi, Hung-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.260-267
    • /
    • 2011
  • Nowadays, automobile manufacturers are faced with increasing global competition which is required low cost as well as high quality. To reduce shipping and handling cost and delivery time, lots of automobile manufactures tried to build their new factory in the neighborhood of market. Simultaneously, many factories are under construction in developing countries to make efficient use of low-wage workers. However, because systems are installed in developing countries as the same type of domestic facilities, systems have lots of problems such as high installation cost and inefficient use of manpower. To find core problems and generate optimal solution of these problems, thinking process of TOC(Theory Of Constrains) is used. In case of transmission gear machining system, semi-auto system is proposed as the best solution to increase manpower efficiency and system utilization. Semi-auto system consists of automatic machining process and manual transporting process. The system layout is generated based on semi-auto process concept. And, 3D simulation method using QUEST is used to verify production volume of generated system.