• Title/Summary/Keyword: Transmission dynamometer

Search Result 33, Processing Time 0.022 seconds

A Study on Vehicle-based Durability Evaluation for Weight-reduced Valve Parts of the Dual Clutch Transmission

  • ChanEun Kim;TaeWook Kim
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.24-27
    • /
    • 2024
  • A monotype valve body for a dual clutch transmission has the potential to reduce costs, weight, and manufacturing time by modularizing various parts, including those of existing solenoid packs and valve bodies, into one through the application of super-precision die casting technology. However, this approach may lead to challenges such as reduced rigidity and increased interference due to modularization and compactness, impacting both product performance due to the reduced weight as well as durability and reliability. Unlike existing products, this approach requires a high-precision thin-wall block to avoid more complicated flow line formation, interference between flow lines, and leaks, as well as a strict quality requirement standard and precise inspections including detection of internal defects. To conduct precise inspections, we built an equivalent model corresponding to a driving distance of 300,000 km. Testing involved simulating actual road loads using a real vehicle and a chassis dynamometer in the FTP-75 mode (EPA Federal Test Procedure). The aim of the study was to establish a vehicle load-based part durability model for manufacturing a mono-type valve body and to develop fundamental technology for part weight reduction through preliminary design by introducing analytical weight reduction technology based on the derived results.

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 6 : A Development of Shift Control Algorithm for Improving the Shift Characteristics of the Hybrid Drivetrain with AMT (버스용 병렬형 하이브리드 동력전달계의 개발 (VI) 제 6 편 : 하이브리드 동력전달계용 자동화 변속기의 변속 질 향상을 위한 변속 제어 알고리듬의 개발)

  • 조성태;전순일;조한상;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.105-114
    • /
    • 2001
  • In this study, a shift control algorithm far improving the shift quality of a parallel hybrid drivetrain with an automated manual transmission (AM) is proposed. The general AMT requires the sophisticated control of clutch in the clutch engagement to improve its shift characteristics, and that is generally known to be difficult. But in this hybrid drivetrain, we can control the speeds of clutch plates by engine and motor control, and it provides the easier clutch control in shift process than general AMT. Additionally, it permits the much-reduced shift shock. The motor control during the shift period is also to achieve reduced velocity drop of the vehicle in comparison with that of a general AMT. Furthermore various dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF

A Development of the Simulation Program for Launching Performance of a Passenger Car equipped Continuously Variable Transmission (무단변속기 장착차량의 발진성능 해석을 위한 시뮬레이션 프로그램의 개발)

  • 김정윤;이장무;여인욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.157-166
    • /
    • 1999
  • This paper describes the launching characteristics of a passenger car using a Push-Belt type Continuously Variable Transmission(CVT) which equipped a wet type multi-plate clutch asa starting device and a solid flywheel with a torsional damper for a torsional coupling device. To reduce the torsional vibration of the drive-line , some torsional coupling devices were used for the passenger car equipped CVT having the clutch as a starting device especially . In this study, we developed the computer simulation program to investigate the launching characteristics of a passenger car equipped CVT using the mathematical models of this system. For the mathematical models of the vehicle, the CVT, the we type multi-plate clutch and the torsional damper, we obtained the specification and the necessary data through the reverse engineering of those. For the verification of our analysis, we performed the test of prototype car with different throttle positions at road and dynamometer. The launching characteristics of a passenger car considered here an acceleration performance and an ascending performance.

  • PDF

Research Trends for Performance, Safety, and Comfort Evaluation of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Choi, Chang-Hyun;Hong, Soon-Jung;Sung, Je-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • Background: Significant technological development and changes happened in the tractor industries. Contrariwise, the test procedures of the major standard development organizations (SDO's) remained unchanged or with a little modification over the years, demanding new tractor test standards or improvement of existing ones for tractor performance, safety, and comfort. Purpose: This study focuses on reviewing the research trends regarding performance, safety and comfort evaluation of agricultural tractors. Based on this review, few recommendations were proposed to revise or improve the current test standards. Review: Tractor power take-off power test using the DC electric dynamometer reduced human error in the testing process and increased the accuracy of the test results. GPS signals were used to determine acceleration and converted into torque. High capacity double extended octagonal ring dynamometer has been designed to measure drawbar forces. Numerical optimization methodology has been used to design three-point hitch. Numerous technologies, driving strategies, and transmission characteristics are being considered for reducing emissions of gaseous and particulate pollutants. Engine emission control technology standards need to be revised to meet the exhaust regulations for agricultural tractors. Finite Element Analysis (FEA) program has been used to design Roll-Over Protective Structures (ROPS). Program and methodology has been presented for testing tractor brake systems. Whole-body vibration emission levels have been found to be very dependent upon the nature of field operation performed, and the test track techniques required development/adaptation to improve their suitability during standardized assessment. Emphasizes should be given to improve visibility and thermal environment inside the cab for tractor operator. Tractors need to be evaluated under electromagnetic compatibility test conditions due to large growing of electronic devices. Research trends reviewed in this paper can be considered for possible revision or improvement of tractor performance, safety, and comfort test standards.

The Effect of Dual Clutch Transmissions on the Stability Emissions Characteristic in a Gasoline Direct Injection Engine (GDI 엔진에 DCT 적용에 따른 배기 배출물 특성에 미치는 영향)

  • Kim, Kwang Lae;Roh, Hyun Gu
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.156-161
    • /
    • 2015
  • This paper described the effect of dual clutch transmissions on the stability emissions characteristic in a GDI engine at vehicle Inspection and Maintenance(I/M) program. In order to investigate the influence of direct injection gasoline engine with DCT, the experimental apparatus consisted of GDI engine with 4 cylinder, dynamometer and exhaust emissions analyzer. Analyzed emission gas include CO, HC and NOx results that DCT vehicle in the case of NOx, HC in automatic transmission vehicles less than 1/2 level was confirmed to be exhausted. However vehicle specific power increases CO also has increased.

Performance Prediction of Rotating Machinery Having Power Split/Circulaled Transmission (동력 분기/순환 구조를 갖는 회전기계의 정성적 성능해석)

  • 조한상;이동준;이장무;박영일;임원식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.953-957
    • /
    • 1994
  • A performance prediction method is presented in this paper for design of a rotating machinery having power split/circulated transmisson with slip elements and planetary gears. And internal power flow patterns of such systems are theoretically analyzed by using mathematical modeling. To estimate usefulness of the designed machinary, geometrical approach has been adopted through the performance locus diagram which represents overall characteristics of the system. This gives us complect prediction of the qualitative performane and effects of design factors such as system layout, types and gear ratios of planetary gears and disign parameters of slip elements. The results for one of them are compared with experimental ones using dynamometer for verification.

  • PDF

A Study of the Myoelectronic Hand for a Hand Amputee (상지절단 장애인용 전동의수에 관한 연구)

  • Kim, Myung-Hoe;Jang, Dae-Jin
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.2
    • /
    • pp.133-141
    • /
    • 2002
  • This purpose of this study was to design the effect of recovering of a hand amputees by Myoelectronic hand. It was designed with 2 degree of freedom in the laboratory. Myoelectronic hand had only one degree of freedom and one movement until now. Also this myoelectronic hand had multi-joint and it could move widely. Wire was used in transmission. Myoelectronic hand data was obtained by analyzing hand anatomically and measuring and that data was applied when it was designed. PID controller of Myoelectronic hand was used to it. Displacement control was applied the first link. Experiment was accomplished in Tip grasp, Power grasp and Hook grasp modes. Displacement control was good in low frequency. Velocity control was applied to each mode. The objective of the study was to develop more better multifunction myoelectronic control strategies. A myoelectronic hand with a hand amputees could do some jobs such as grasping materials, lifting weighting, holding cup and etc. As a result of this study, all subjects with hand amputees significantly improved in ADL. Further studies were needed to evaluate the effect of a myoelectronic hand with more precise laboratory equipment.

  • PDF

A Study on Tuning Effects of Intake Manifold, Intake Pipe and Air Filter upon Performance and Exhaust Emissions of Driving Car (운행자동차 성능 및 배기 배출물에 미치는 흡기 다기관, 흡기 파이프 및 공기필터의 튜닝효과에 관한 연구)

  • Bae, Myung-whan;Ku, Young Jin;Park, Hui-seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.538-548
    • /
    • 2016
  • The purpose of this study is to identify the possibility of effective tuning works, understand the characteristics of tuning engine, and analyse the basic data of engine tuning inspection corresponding to the safe operation and environment of a driving gasoline car. The effects of tuning on the characteristics of performance and exhaust emissions under a wide range of engine speeds are experimentally investigated by the actual driving car with a four-cycle, four-cylinder DOHC, turbo-intercooler, water-cooled gasoline engine operating at four types of non-tuning, tuning 1, 2 and 3. The tuning parts in the gasoline engine are the intake manifold, intake pipe and air filter. In the experiment, the output, torque and air-fuel ratio of the five-speed automatic transmission vehicles were measured at the chassis dynamometer(Dynojet 224xLC) with one person on board. The exhaust emissions of $NO_X$, THC, CO, $O_2$ and $CO_2$, and excess air ratio(${\lambda}$) at the other chassis dynamometer(DASAN-MD-ASM-97-KR-HD) were also measured by the idle/constant-speed mode(ASM2525 mode) test method. It is found that the actual air-fuel ratios of non-tuning and tuning engines were shown to be lower than the stoichiometric air-fuel ratio with increasing engine speed, and the actual air-fuel ratio of non-tuning engine was slightly higher than those of tuning engines when the engine speed is more than 4000 rpm. The output was significantly increased by the tuning whereby the maximum output of tuning engine was more increased to approximately 117.64% than that of non-tuning engine. In addition, CO, THC and $NO_X$ emissions of non-tuning and tuning engines measured by the constant-speed test mode were all satisfied with the inspection standards. CO emission was increased, while THC and $NO_X$ emissions were reduced by tuning.

Effect of Fast ATF Warm-up on Fuel Economy Using Recovery of EGR Gas Waste Heat in a Diesel Engine (EGR 가스 폐열회수에 의한 디젤엔진의 연비에 미치는 ATF 워밍업의 영향)

  • Heo, Hyung-Seok;Lee, Dong-Hyuk;Kang, Tae-Gu;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2012
  • Cold start driving cycles exhibit an increases in friction losses due to the low temperatures of metal components and media compared to the normal operating engine conditions. These friction losses are adversely affected to fuel economy. Therefore, in recent years, various techniques for the improvement of fuel economy at cold start driving cycles have been introduced. The main techniques are the upward control of coolant temperature and the fast warm-up techniques. In particular, the fast warm-up techniques are implemented with the coolant flow-controlled water pump and the WHRS (waste heat recovery system). This paper deals with an effect of fast ATF (automatic transmission fluid) warm-up on fuel economy using a recovery system of EGR gas waste heat in a diesel engine. On a conventional diesel engine, two ATF coolers have been connected in series, i.e., an air-cooled ATF cooler is placed in front of the condenser of air conditioning system and a water-cooled one is embedded into the radiator header. However, the new system consists of only a water-cooled heat exchanger that has been changed into the integrated structure with an EGR cooler to have the engine coolant directly from the EGR cooler. The ATF cooler becomes the ATF warmer and cooler, i.e., it plays a role of an ATF warmer if the temperature of ATF is lower than that of coolant, and plays a role of an ATF cooler otherwise. Chassis dynamometer experiments demonstrated the fuel economy improvement of over 2.5% with rapid increase in the ATF temperature.

Study on the Characteristics of Carbon Dioxide Emissions Factors from Passenger Cars (승용차의 $CO_2$ 배출가스 영향인자 특성에 관한 연구)

  • Yoo, Jeong-Ho;Kim, Dae-Wook;Yoo, Young-Sook;Eum, Myung-Do;Kim, Jong-Choon;Lee, Sung-Wook;Baik, Doo-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.10-15
    • /
    • 2009
  • Emission regulations on greenhouse gas(GHG) in automobiles have been stringent because of global warming effect. Over 90% of total GHG emission are carbon dioxides and about 20% of this $CO_2$ emission are emitted from automobiles. In this study, 110 vehicles were tested on a chassis dynamometer and $CO_2$ emissions and fuel economy were measured in order to investigate the characteristics of $CO_2$ emission factor from passenger vehicles which are the most dominant vehicle type in Korea. The characteristics of emissions in accordance with displacements, gross vehicle weight, NIER and CVS-75 speed mode were discussed. It was found that vehicles having larger displacement, heavier gross vehicle weight, automatic transmission and specially at cold start emitted more $CO_2$ emissions. From these results, correlation between $CO_2$ emission and fuel economy was also obtained. This study may contribute to evaluate domestic greenhouse gas emissions and establish national policies on climate changes in future.