• Title/Summary/Keyword: Transmission dynamics

Search Result 227, Processing Time 0.027 seconds

Analysis of risk for high-speed trains caused by crosswind in subgrade settlement zones based on CFD-FE coupling

  • Qian Zhang;Xiaopei Cai;Tao Wang;Yanrong Zhang;Shusheng Yang
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.275-287
    • /
    • 2023
  • Subgrade differential settlement of high-speed railways was a pivotal issue that could increase the risk of trains operation. The risk will be further increased when trains in the subsidence zone are affected by crosswinds. In this paper, the computational fluid dynamics (CFD) model and finite element (FE) model were established, and the data transmission interface of the two models was established by fluid-solid interaction (FSI) method to form a systematic crosswind-train-track-subgrade dynamic model. The risk of high-speed train encountering crosswind in settlement area was analyzed. The results showed that the aerodynamic force of the trains increased significantly with the increase in crosswind speed. The aerodynamic force of the trains could reach 125.14 kN, significantly increasing the risk of derailment and overturning. Considering the influence of crosswind, the risk of train operation could be greatly increased. The safety indices and the wheel-rail force both increased with the increase of the wind speed. For the high-speed train running at 350 km/h, the warning value of wind speed was 10.2 m /s under the condition of subgrade settlement with wavelength of 20 m and amplitude of 15 mm.

Research on Application of SIR-based Prediction Model According to the Progress of COVID-19 (코로나-19 진행에 따른 SIR 기반 예측모형적용 연구)

  • Hoon Kim;Sang Sup Cho;Dong Woo Chae
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Predicting the spread of COVID-19 remains a challenge due to the complexity of the disease and its evolving nature. This study presents an integrated approach using the classic SIR model for infectious diseases, enhanced by the chemical master equation (CME). We employ a Monte Carlo method (SSA) to solve the model, revealing unique aspects of the SARS-CoV-2 virus transmission. The study, a first of its kind in Korea, adopts a step-by-step and complementary approach to model prediction. It starts by analyzing the epidemic's trajectory at local government levels using both basic and stochastic SIR models. These models capture the impact of public health policies on the epidemic's dynamics. Further, the study extends its scope from a single-infected individual model to a more comprehensive model that accounts for multiple infections using the jump SIR prediction model. The practical application of this approach involves applying these layered and complementary SIR models to forecast the course of the COVID-19 epidemic in small to medium-sized local governments, particularly in Gangnam-gu, Seoul. The results from these models are then compared and analyzed.

Formal Verification of Twin Clutch Gear Control System

  • Muhammad Zaman;Amina Mahmood;Muhammad Atif;Muhammad Adnan Hashmi;Muhammad Kashif;Mudassar Naseer
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.151-159
    • /
    • 2024
  • Twin clutch model enables the power-shifts as conventional planetary automatic transmission and eradicates the disadvantages of single clutch trans- mission. The automatic control of the dual clutches is a problem. Particularly to control the clutching component that engages when running in one direction of revolution and disengages when running the other direction, which exchange the torque smoothly during torque phase of the gearshifts on planetary-type automatic transmissions, seemed for quite a while hard to compensate through clutch control. Another problem is to skip gears during multiple gearshifts. However, the twin clutch gear control described in ["M Goetz, M C Levesley and D A Crolla. Dynamics and control of gearshifts on twin clutch transmissions, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2005"], a significant improvement in twin clutch gear control system is discussed. In this research our objective is to formally specify the twin clutch gear control system and verify it with the help of formal methods. Formal methods have a high potential to give correctness estimating techniques. We use UPPAAL for formal specification and verification. Our results show that the twin clutch gear control model partially fulfills its functional requirements.

A Path-based Traffic Flow Simulation Model for Large Scale Network (기종점 기반 대규모 가로망 교통류 시뮬레이션 모형)

  • 조중래;홍영석;손영태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.115-131
    • /
    • 2001
  • The Purpose of this study is to develop a simulation model for large-scale network with interrupted flow as well as uninterrupted flow. The Cell Transmission(CT) theory is used to simulate traffic flow. Flow transition rules have been newly developed to simulate traffic flows at merging and diverging sections, and signalized intersections. In the model, it is assumed that dynamic OD table is exogenously given. Simulation results for toy network shows that the model can explain queue dynamics not only in signalized intersections of urban arterials, but also in merging and diverging sections of freeway. In case study, the model successfully simulated traffic flows of 145,000 vehicles on CBD network of city of Seoul with 74 traffic zones, 133 signalized intersections among 395 nodes and 1110 links.

  • PDF

Viral Load Dynamics After Symptomatic COVID-19 in Children With Underlying Malignancies During the Omicron Wave

  • Ye Ji Kim;Hyun Mi Kang;In Young Yoo;Jae Won Yoo;Seong Koo Kim;Jae Wook Lee;Dong Gun Lee;Nack-Gyun Chung;Yeon-Joon Park;Dae Chul Jeong;Bin Cho
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.2
    • /
    • pp.73-83
    • /
    • 2023
  • Purpose: This study aimed to investigate the viral load dynamics in children with underlying malignancies diagnosed with symptomatic coronavirus disease 2019 (COVID-19). Methods: This was a retrospective longitudinal cohort study of patients <19 years old with underlying hemato-oncologic malignancies that were diagnosed with their first symptomatic severe acute respiratory syndrome coronavirus 2 polymerase chain reaction (PCR)-confirmed COVID-19 infection during March 1 to August 30, 2022. Review of electronic medical records and telephone surveys were undertaken to assess the clinical presentations and transmission route of the patients. Thresholds of negligible likelihood of infectious virus was defined as E gene reverse transcription (RT)-PCR cycle threshold (Ct) value ≥25. Results: During the 6-month study period, a total of 43 children with 44 episodes of COVID-19 were included. Of the 44 episodes, the median age of the patients included was 8 years old (interquartile range [IQR], 4.9-10.5), and the most common underlying disease was acute lymphoid leukemia (n=30, 68.2%), followed by patients post-hematopoietic stem cell transplantation (n=8, 18.2%). Majority of the patients had mild COVID-19 (n=32, 72.7%), and three patients (7.0%) had severe/critical COVID-19. Furthermore, 2.3% (n=1) died of COVID-19 associated acute respiratory distress syndrome. The largest percentage of the patients showed E gene RT-PCR Ct value ≥25 between 15-21 days (n=13, 39.4%), followed by 22-28 days (n=10, 30.3%). In 15.2% (n=5), E gene RT-PCR Ct value remained <25 beyond 28 days after initial positive PCR. Refractory malignancy status (β, 67.0; 95% confidence interval, 7.0-17.0; P=0.030) was significantly associated with prolonged duration of E gene RT-PCR <25. A patient with prolonged duration of E gene RT-PCR Ct value <25 was suspected to have infectivity shown by the transmission of the virus to his mother at day 86 after his initial positive test. Conclusions: Children that acquire symptomatic COVID-19 during refractory malignancy state are at a high risk for prolonged shedding warranting PCR-based transmission precautions in this cohort of patients.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.

Microdroplet Impact Dynamics at Very High Velocity on Face Masks for COVID-19 Protection (코로나-19 보호용 페이스 마스크에서의 액적 고속 충돌 거동)

  • Choi, Jaewon;Lee, Dongho;Eo, Jisu;Lee, Dong-Geun;Kang, Jeon-Woong;Ji, Inseo;Kim, Taeyung;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.282-288
    • /
    • 2022
  • Facial masks have become indispensable in daily life to prevent infection and spread through respiratory droplets in the era of the corona pandemic. To understand how effective two different types of masks (i.e., KF-94 mask and dental mask) are in blocking respiratory droplets, i) we preferentially analyze wettability characteristics (e.g., contact angle and contact angle hysteresis) of filters consisting of each mask, and ii) subsequently observe the dynamic behaviors of microdroplets impacting at high velocities on the filter surfaces. Different wetting properties (i.e., hydrophobicity and hydrophilicity) are found to exhibit depending on the constituent materials and pore sizes of each filter. In addition, the pneumatic conditions for stably and uniformly dispensing microdroplets with a certain volume and impacting behaviors associated with the impacting velocity and filter type change are systematically explored. Three distinctive dynamics (i.e., no penetration, capture, and penetration) after droplet impacting are observed depending on the type of filter constituting the masks and droplet impact velocity. The present experimental results not only provide very useful information in designing of face masks for prevention of transmission of infectious respiratory diseases, but also are helpful for academic researches on droplet impacts on various porous surfaces.

The Dynamics of Intraday Price Transmission Across the Stock Index Futures Markets: The Standard & Poor's 500, the New York Stock Exchange Composite, and the Major Market Index Futures (주가지수선물시장 상호간의 가격정보 전달구조에 관한 연구)

  • Kim, Min-Ho
    • The Korean Journal of Financial Management
    • /
    • v.12 no.2
    • /
    • pp.239-271
    • /
    • 1995
  • 본 연구는 현재 미국에서 거래되고 있는 세 가지 주가지수선물 상호간의 일중(intradaily) 가격선도(price leadership) 관계에 관한 실증분석이다. 본 연구가 기존의 연구와 다른점은, 기존의 연구가 주가지수선물과 그 기준이 되는 현물 가격사이의 가격 선도 관계에 초점을 두고 있는데 반하여 본 연구는 주가지수선물 시장 사이에서 존재하는 가격 선도관계를 분석하고 있다는 점이다. 실증 분석의 대상이 된 주가지수선물들은 Chicago Mercantile Exchange의 Standard and Poor's 500 Index(S&P 500), New York Futures Exchange의 New York Stock Exchange Composit Index (NYSE), 그리고 Chicago Board of Trade의 Major Market Index(MMI)이다. 만약 이들 시장들이 정보의 전달에 있어서 효율적(informationally efficient) 이라면 이들 가격간에 선도-지연(lead-lag) 현상은 존재하지 않을 것이다. 그러나 어느 한 시장이 새로운 정보를 선물가격에 반영하는데 다른 시장에 비해 상대적으로 느리다면, 이들 시장 상호간에는 가격의 전이(transmission)현상이 존재하게 될 것이다. 이들 선물간의 일중 가격선도 관계 연구는 이러한 시장의 효율성 문제를 밝히는데 의의가 있을 뿐만 아니라, 시장간의 단기적 가격 괴리를 이용하려는 차익거래자들에게도 유용하게 쓰일 수 있을 것이다. 본 연구는 위에서 언급한 각각의 주가지수선물들이 가격 선도성을 가질 수 있는 이유와 관련된 다음과 같은 세 가지 가설을 설정하였다. 첫째 가설은, 가격의 선도성은 거래량과 관련이 있다는 것이다. 즉, 이들 주가지수선물 중 가장 거래량이 많은 S&P 500 선물이 다른 선물을 선도할 것이라는 가설이다. 둘째, 가격의 선도성은 주가지수를 구성하는 주식의 수에 비례한다는 가설이다. 다시 말하면, 보다 않은 수로 구성된 주가지수일수록 정보처리 속도가 빠르다는 가설이다. 따라서, 본 연구에 포함된 주가지수선물 중 가장 많은 수의 주식을 대상으로 하는 NYSE 선물이 다른 선물을 선도할 것이다. 마지막 가설은 정보의 처리는 대형주 혹은 기관선호주(institutionally-favored)들이 주도한다는 것이다. 따라서, 주로 이와 같은 주식들로 구성 된 MMI 선물이 선도성을 가질 수 있다는 것이다. 위의 가설들을 검증하고 시장간의 가격 선도관계를 분석하기 위하여 본 연구는 vector autoregressive(VAR) 모형을 이용하여 충격-반응 함수(impulse response functions)를 계산하고, 분산분해(variance decomposition)를 수행하였다. 또한 가격 상호간에 존재할지도 모르는 공적분(cointegration)관계를 Johansen(1991)과 Jokansen and Juselius (1992) 등이 제시한 다변량 공적분 검정(multivariate cointegration test)를 통하여 분석하였다. 분석기간은 1986년 1월부터 1990년 7월까지이며, 각 주가지수선물들의 5분 간격 data를 사용하였다. 연구결과, 충격-반응 분석은 어느 한 시장에서의 충격(shock)은 다른 시장으로 매우 빠르게 전달되고 있음을 보여 주었다. 그러나 충격의 지속정도는 그 충격의 진원지에 따라 달랐다. 즉, NYSE나 MMI 선물로부터 발생 한 충격은 다른 시장의 가격에 5분 안에 반영을 끝냈지 만 S&P 500 선물에서 발생한shock은 그 이상 지속되었다. 또한, 분산분해 결과 S&P 500 선물이 자기자신 뿐만 아니라 다른 시장의 예상하지 못했던 움직임(unexpected movements)을 설명하는데 가장 큰 설명력(explanatory power)을 가지고 있었다. 결론적으로 S&P 500 선물이 다른 선물을 약 5분 간격으로 선도하였다. 이는 가격의 선도가 거래량과 밀접한 관계가 있음을 보여 주는 것이다.

  • PDF

Uncertainty Estimation of Single-Channel Temperature Estimation Algorithm for Atmospheric Conditions in the Seas around the Korean Peninsula (한반도 주변해역 대기환경에 대한 싱글채널 온도추정 알고리즘의 불확도 추정)

  • Jong Hyuk Lee;Kyung Woong Kang;Seungil Baek;Wonkook Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.355-361
    • /
    • 2023
  • Temperature of the Earth's surface is a crucial physical variable in understanding weather and atmospheric dynamics and in coping with extreme heat events that have a great impact on living organismsincluding humans. Thermalsensors on satellites have been a useful meansfor acquiring surface temperature information for wide areas on the globe, and thus characterization of its estimation uncertainty is of central importance for the utilization of the data. Among various factors that affect the estimation, the uncertainty caused by the algorithm itself has not been tested for the atmospheric environment of Korean vicinity. Thisstudy derivesthe uncertainty of the single-channel algorithm under the local atmospheric and oceanic conditions by using reanalysis data and buoy temperature data collected around Korea. Atmospheric profiles were retrieved from two types of reanalysis data, the fifth generation of European Centre for Medium-Range Weather Forecasts reanalysis of the global climate and weather (ERA5) and Modern-Era Retrospective analysis for Research and Applications-2 (MERRA-2) to investigate the effect of reanalysis data. MODerate resolution atmospheric TRANsmission (MODTRAN) was used as a radiative transfer code for simulating top of atmosphere radiance and the atmospheric correction for the temperature estimation. Water temperatures used for MODTRAN simulations and uncertainty estimation for the single-channel algorithm were obtained from marine weather buoyslocated in seas around the Korean Peninsula. Experiment results showed that the uncertainty of the algorithm varies by the water vapor contents in the atmosphere and is around 0.35K in the driest atmosphere and 0.46K in overall, regardless of the reanalysis data type. The uncertainty increased roughly in a linear manner as total precipitable water increased.

Spatiotemporal Analysis of Hippocampal Long Term Potentiation Using Independent Component Analysis

  • Kim, T.S.;Lee, J.J.;Hwang, S.J.;Lee, Y.K.;Park, J.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • Long-term potentiation (LTP) of synaptic transmission is the most widely studied model for learning and memory. However its mechanisms are not clearly elucidated and are a subject for intense investigation. Previous attempts to decipher cellular mechanisms and network properties involved a current-source density analysis (CSDA) of the LTP from small animal hippocampus measured with a limited number of microelectrodes (typically <3), only revealing limited nature of spatiotemporal dynamics. Recent advancement in multi-electrode array (MEA) technology allows continuous and simultaneous recordings of LTP with more than 60 electrodes. However CSDA via the standard Laplacian transform is still limited due to its relatively high sensitivity toward noise, inability of resolving overlapped current sources and sinks, and its requirement for tissue conductivity values. In this study, we propose a new methodology for improved CSDA. Independent component analysis and its joint use (i.e., Joint-ICA) are applied to extract spatiotemporal components of LTP. The results show that ICA and Joint-ICA are capable of extracting independent spatiotemporal components of LTP generators. The ICs of LTP indicate the reversing roles of current sources and sinks which are associated with LTP.