• Title/Summary/Keyword: Transmission dose

Search Result 219, Processing Time 0.031 seconds

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

Transmission Dose Estimation Algorithm for Irregularly Shaped Radiation Field (부정형 방사선 조사면에 대한 투과선량 보정 알고리즘)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Wu Hong Gyun;Lee Hyoung Koo;Shin Kyo Chul;Kim Siyong;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.274-282
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, the algorithm for estimating the transmission dose for open radiation fields was modified for application to partially blocked radiation fields. Materials and Methods : The beam data was measured with a flat solid phantom with various blocked fields. A new correction algorithm for partially blocked radiation field was developed from the measured data. This algorithm was tested in some settings simulating clinical treatment with an irregular field shape. Results : The correction algorithm for the beam block could accurately reflect the effect of the beam block, with an error within ${\pm}1.0\%$, with both square fields and irregularly shaped fields. Conclusion : This algorithm can accurately estimate the transmission dose in most radiation treatment settings, including irregularly shaped field.

Inhomogeneity correction in on-line dosimetry using transmission dose (투과선량을 이용한 온라인 선량측정에서 불균질조직에 대한 선량 보정)

  • Wu, Hong-Gyun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.139-147
    • /
    • 1998
  • Purpose: Tissue inhomogeneity such as lung affects tumor dose as well as transmission dose in new concept of on-line dosimetry which estimates tumor dose from transmission dose using the new algorithm. This study was carried out to confirm accuracy of correction by tissue density in tumor dose estimation utilizing transmission dose. Methods: Cork phantom (CP, density $0.202\;gm/cm^3$) having similar density with lung parenchyme and polystyrene phantom (PP, density $1.040\;gm/cm^3$) having similar density with soft tissue were used. Dose measurement was carried out under condition simulating human chest. On simulating AP-PA irradiation, PPs with 3 cm thickness were placed above and below CP, which had thickness of 5, 10, and 20 cm. On simulating lateral irradiation, 6 cm thickness of PP was placed between two 10 cm thickness CPs additional 3 cm thick PP was placed to both lateral sides. 4, 6, and 10 MV x-ray were used. Field size was in the range of $3{\times}3$ cm through $20{\times}20$ cm, and phantom-chamber distance (PCD) was 10 to 50 cm. Above result was compared with another sets of data with equivalent thickness of PP which was corrected by density. Result: When transmission dose of PP was compared with equivalent thickness of CP which was corrected with density, the average error was 0.18 (${\pm}0.27$) % for 4 MV, 0.10 (${\pm}0.43$) % for 6 MV, and 0.33 (${\pm}0.30$) % for 10 MV with CP having thickness of 5 cm. When CP was 10 cm thick, the error was 0.23 (${\pm}0.73$) %, 0.05 (${\pm}0.57$) %, and 0.04 (${\pm}0.40$) %, while for 20 cm, error was 0.55 (${\pm}0.36$) %, 0.34 (${\pm}0.27$) %, and 0.34 (${\pm}0.18$) % for corresponding energy. With lateral irradiation model, difference was 1.15 (${\pm}1.86$) %, 0.90 (${\pm}1.43$) %, and 0.86 (${\pm}1.01$) % for corresponding energy. Relatively large difference was found in case of PCD having value of 10 cm. Omitting PCD with 10 cm, the difference was reduced to 0.47 (${\pm}$1.17) %, 0.42 (${\pm}$0.96) %, and 0.55 (${\pm}$0.77) % for corresponding energy. Conclusion When tissue inhomogeneity such as lung is in tract of x-ray beam, tumor dose could be calculated from transmission dose after correction utilizing tissue density.

  • PDF

Radiation Absorbed Dose Calculation Using Planar Images after Ho-166-CHICO Therapy (Ho-166-CHICO 치료 후 평면 영상을 이용한 방사선 흡수선량의 계산)

  • 조철우;박찬희;원재환;왕희정;김영미;박경배;이병기
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 1998
  • Ho-l66 was produced by neutron reaction in a reactor at the Korea Atomic Energy Institute (Taejon, Korea). Ho-l66 emits a high energy beta particles with a maximum energy of 1.85 MeV and small proportion of gamma rays (80 keV). Therefore, the radiation absorbed dose estimation could be based on the in-vivo quantification of the activity in tumors from the gamma camera images. Approximately 1 mCi of Ho-l66 in solution was mixed into the flood phantom and planar scintigraphic images were acquired with and without patient interposed between the phantom and scintillation camera. Transmission factor over an area of interest was calculated from the ratio of counts in selected regions of the two images described above. A dual-head gamma camera(Multispect2, Siemens, Hoffman Estates, IL, USA) equipped with medium energy collimators was utilized for imaging(80 keV${\pm}$10%). Fifty-nine year old female patient with hepatoma was enrolled into the therapeutic protocol after the informed consent obtained. Thirty millicuries(110MBq) of Ho-166-CHICO was injected into the right hepatic arterial branch supplying hepatoma. When the injection was completed, anterior and posterior scintigraphic views of the chest and pelvic regions were obtained for 3 successive days. Regions of interest (ROIs) were drawn over the organs in both the anterior and posterior views. The activity in those ROIs was estimated from geometric mean, calibration factor and transmission factors. Absorbed dose was calculated using the Marinelli formula and Medical Internal Radiation Dose (MIRD) schema. Tumor dose of the patient treated with 1110 MBq(30 mCi) Ho-l66 was calculated to be 179.7 Gy. Dose distribution to normal liver, spleen, lung and bone was 9.1, 10.3, 3.9, 5.0 % of the tumor dose respectively. In conclusion, tumor dose and absorbed dose to surrounding structures were calculated by daily external imaging after the Ho-l66 therapy for hepatoma. In order to limit the thresholding dose to each surrounding organ, absorbed dose calculation provides useful information.

  • PDF

Amorphization of Silicon by 250 keV Electron Irradiation and Hydrogen Annealing

  • Jo Jung-Yol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.23-27
    • /
    • 2005
  • We observed that optical properties of silicon changed under high dose electron irradiation at 250 keV. Our experimental results revealed that the optical transmission through a silicon wafer is significantly increased by electron irradiation. Transmission increase by the change in the absorption coefficient is explained through an analogy with amorphous silicon. Moreover, solar cell open-circuit voltages indicated that defects were generated by electron irradiation, and that the defects responded to annealing. Our results demonstrated that the optical properties of silicon can be controlled by a combination of electron irradiation and hydrogen annealing.

Clinical Application of in Vivo Dosimetry System in Radiotherapy of Pelvis (골반부 방사선 치료 환자에서 in vivo 선량측정시스템의 임상적용)

  • Kim, Bo-Kyung;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 2002
  • The accuracy of radiation dose delivery to target volume is one of the most important factors for good local control and less treatment complication. In vivo dosimetry is an essential QA procedure to confirm the radiation dose delivered to the patients. Transmission dose measurement is a useful method of in vivo dosimetry and it's advantages are non-invasiveness, simplicity and no additional efforts needed for dosimetry. In our department, in vivo dosimetry system using measurement of transmission dose was manufactured and algorithms for estimation of transmission dose were developed and tested with phantom in various conditions successfully. This system was applied in clinic to test stability, reproducibility and applicability to daily treatment and the accuracy of the algorithm. Transmission dose measurement was performed over three weeks. To test the reproducibility of this system, X-tay output was measured before daily treatment and then every hour during treatment time in reference condition(field size; $10 cm{\times} 10 cm$, 100 MU). Data of 11 patients whose pelvis were treated more than three times were analyzed. The reproducibility of the dosimetry system was acceptable with variations of measurement during each day and over 3 week period within ${\pm}2.0%$. On anterior- posterior and posterior fields, mean errors were between -5.20% and +2.20% without bone correction and between -0.62% and +3.32% with bone correction. On right and left lateral fields, mean errors were between -10.80% and +3.46% without bone correction and between -0.55% and +3.50% with bone correction. As the results, we could confirm the reproducibility and stability of our dosimetry system and its applicability in daily radiation treatment. We could also find that inhomogeneity correction for bone is essential and the estimated transmission doses are relatively accurate.

Development and Characteristics of the x-ray transmission anode tube for the thickness measurement of film (필름 두께 측정용 투과 양극형 x-ray tube의 개발 및 특성)

  • Kim, Sung-Soo;Kim, Do-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.240-246
    • /
    • 2008
  • The x-ray transmission anode Ag-target tube was developed to apply for the thickness measurement of film in the thickness range of several tens$\sim$several hundreds ${\mu}m$ and its characteristics were evaluated. The energy distribution and dose of x-ray from Ag-target tube was investigated at the tube voltage near 10 kV, and discussed in comparition with that from W-target tube. The energy distribution and dose of x-rays passing through film were measured with various thickness of Ny and PP film. From these results, it was confirmed that our x-ray tube can be applied for the thickness measurement of film.

Effect of irradiation on the Streptococcus mutans (방사선조사가 Streptococcus mutans에 미치는 영향)

  • Ahn, Ki-Dong;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Purpose : To observe direct effect of irradiation on cariogenic Streptooccus mutans. Materials and Methods : S. mutans GS5 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40Gy. Viability and changes in antibiotic sensitivity, morphology, transcription of virulence factors, and protein profile of bacterium after irradiation were examined by pour plate, disc diffusion method, transmission electron microscopy, RT-PCR, and SDS-PAGE, respectively. Results : After irradiation with 10 and 20Gy, viability of S. mutans was reduced. Further increase in irradiation dose, however, did not affect the viability of the remaining cells of S. mutans. Irradiated 5. mutans was found to have become sensitive to antibiotics. In particular, the bacterium irradiated with 40Gy increased its susceptibility to cefotaxime, penicillin, and tetracycline. Under the transmission electron microscope, number of morphologically abnormal cells was increased as the irradiation dose was increased. S. mutans irradiated with 10 Gy revealed a change in the cell wall and cell membrane. As irradiation dose was increased, a higher number of cells showed thickened cell wall and cell membrane and Iysis, and appearance of ghost cells was noticeable. In RT-PCR, no difference was detected in expression of gtfB and spap between cells with and without irradiation of 40Gy. In SDS-PAGE, proteins with higher molecular masses were gradually diminished as irradiation dose was increased. Conclusion : These results suggest that irradiation affects the cell Integrity of S. mutans, as observed by SDS-PAGE, and as manifested by the change in cell morphology, antibiotic sensitivity, and eventually viability of the bacterium.

  • PDF

IN-VIVO DOSE RECONSTRUCT10N USING A TRANSMISION FACTOR AND AN EFFECTIVE FIELD CONCEPT (팬텀투과계수와 유효조사면 개념을 이용한 종양선량 확인에 관한 연구)

  • Kim, You-Hyun;Yeo, In-Hwan;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The aim of this study Is to develop a simple and fast method which computes in-vivo doses from transmission doses measured doting patient treatment using an ionization chamber. Energy fluence and the dose that reach the chamber positioned behind the patient is modified by three factors: patient attenuation, inverse square attenuation. and scattering. We adopted a straightforward empirical approach using a phantom transmission factor (PTF) which accounts for the contribution from all three factors. It was done as follows. First of all, the phantom transmission factor was measured as a simple ratio of the chamber reading measured with and without a homogeneous phantom in the radiation beam according to various field sizes($r_p$), phantom to chamber distance($d_g$) and phantom thickness($T_p$). Secondly, we used the concept of effective field to the cases with inhomogeneous phantom (patients) and irregular fields. The effective field size is calculated by finding the field size that produces the same value of PTF to that for the irregular field and/or inhomogeneous phantom. The hypothesis is that the presence of inhomogeneity and irregular field can be accommodated to a certain extent by altering the field size. Thirdly, the center dose at the prescription depth can be computed using the new TMR($r_{p,eff}$) and Sp($r_{p,eff}$) from the effective field size. After that, when TMR(d, $r_{p,eff}$) and SP($r_{p,eff}$) are acquired. the tumor dose is as follows. $$D_{center}=D_t/PTF(d_g,\;T_p){\times}(\frac{SCD}{SAD})^2{\times}BSF(r_o){\times}S_p(r_{p,eff}){\times}TMR(d,\;r_{p,eff})$$ To make certain the accuracy of this method, we checked the accuracy for the following four cases; in cases of regular or irregular field size, inhomogeneous material included, any errors made and clinical situation. The errors were within 2.3% for regular field size, 3.0% irregular field size, 2.4% when inhomogeneous material was included in the phantom, 3.8% for 6 MV when the error was made purposely, 4.7% for 10 MV and 1.8% for the measurement of a patient in clinic. It is considered that this methode can make the quality control for dose at the time of radiation therapy because it is non-invasive that makes possible to measure the doses whenever a patient is given a therapy as well as eliminates the problem for entrance or exit dose measurement.

  • PDF

Commissionning of Dynamic Wedge Field Using Conventional Dosimetric Tools (선량 중첩 방식을 이용한 동적 배기 조사면의 특성 연구)

  • Yi Byong Yong;Nha Sang Kyun;Choi Eun Kyung;Kim Jong Hoon;Chang Hyesook;Kim Mi Hwa
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • Purpose : To collect beam data for dynamic wedge fields using conventional measurement tools without the multi-detector system, such as the linear diode detectors or ionization chambers. Materials and Methods : The accelerator CL 2100 C/D has two photon energies of 6MV and 15MV with dynamic wedge an91es of 15o, 30o, 45o and 60o. Wedge transmission factors, percentage depth doses(PDD's) and dose Profiles were measured. The measurements for wedge transmission factors are performed for field sizes ranging from $4\times4cm^2\;to\;20\times20cm^2$ in 1-2cm steps. Various rectangular field sizes are also measured for each photon energy of 6MV and 15MV, with the combination of each dynamic wedge angle of 15o 30o. 45o and 60o. These factors are compared to the calculated wedge factors using STT(Segmented Treatment Table) value. PDD's are measured with the film and the chamber in water Phantom for fixed square field. Converting parameters for film data to chamber data could be obtained from this procedure. The PDD's for dynamic wedged fields could be obtained from film dosimetry by using the converting parameters without using ionization chamber. Dose profiles are obtained from interpolation and STT weighted superposition of data through selected asymmetric static field measurement using ionization chamber. Results : The measured values of wedge transmission factors show good agreement to the calculated values The wedge factors of rectangular fields for constant V-field were equal to those of square fields The differences between open fields' PDDs and those from dynamic fields are insignificant. Dose profiles from superposition method showed acceptable range of accuracy(maximum 2% error) when we compare to those from film dosimetry. Conclusion : The results from this superposition method showed that commissionning of dynamic wedge could be done with conventional dosimetric tools such as Point detector system and film dosimetry winthin maximum 2% error range of accuracy.

  • PDF