• Title/Summary/Keyword: Transmission Zero

Search Result 330, Processing Time 0.028 seconds

A Study on the Sequence Impedance Modeling of Underground Transmission Systems (지중송전선로의 대칭분 임피던스 모델링에 관한 연구)

  • Hwang, Young-Rok;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Analysis of Sequence Impedances of 345kV Cable Transmission Systems (실계통 345kV 지중송전선 대칭좌표 임피던스의 해석)

  • Choi, Jong-Kee;Ahn, Yong-Ho;Yoon, Yong-Beum;Oh, Sei-Ill;Kwa, Yang-Ho;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Power Divider using Zero-Degree Composite Right/Left-Handed Transmission Line (0도 CRLH 전송선로를 이용한 전력 분배기)

  • Kim, Seung-Hwan;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.720-725
    • /
    • 2009
  • This paper proposes a modified Wilkinson power divider using a zero-degree composit right/left-handed(CRLH) transmission line to obtain a isolation between ports. A zero-degree CRLH transmission line, which has a total electrical length of zero, consists of a RH(Right-Handed) transmission line of a negative phase characteristic and a LH (Left-Handed) transmission line of a positive phase characteristic. To validate a value of zero-degree CRLH transmission line, the electrical lengths of RH and LH transmission line select $-30^{\circ}$ and $+30^{\circ}$ and a 2-way Wilkinson divider designed, we are measured S21 of -3.3dB, S11 of -27.5dB and S23 of -25dB at 1GHz center frequency. These characteristics are same the conventional divider using RH transmission line.

  • PDF

Synthesis of a Complex $R^1CR$ filter with finite transmission zeros

  • Kikuchi, Hidehiro;Ishibashi, Yukio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1863-1866
    • /
    • 2002
  • This paper describes synthesis of a complex R$^{i}$ CR filter with a finite transmission zero except zero frequency. First, a new kernel function is proposed. Secondly, how to determine the element values included in the R$^{i}$ CR filter is described. A fifth-order R$^{i}$ CR filter is designed. Finally, the sensitivity property of the proposed filter is evaluated through computer simulation.

  • PDF

A Simple Structure of Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) Buck Converter with Coupled Inductor

  • Wei, Xinxin;Luo, Ciyong;Nan, Hang;Wang, Yinghao
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1480-1488
    • /
    • 2015
  • In this paper, a revolutionary buck converter is proposed with soft-switching technology, which is realized by a coupled inductor. Both zero-voltage switching (ZVS) of main switch and zero-current switching (ZCS) of freewheeling diode are achieved at turn on and turn off without using any auxiliary circuits by the resonance between the parasitic capacitor and the coupled inductor. Furthermore, the peak voltages of the main switch and the peak current of the freewheeling diode are significantly reduced by the coupled inductor. As a result, the proposed converter has the advantages of simple circuit, convenient control, low consumption and so on. The detailed operation principles and steady-state analysis of the proposed ZVS-ZCS buck converter are presented, and detailed power loss analysis and some simulation results are also included. Finally, experimental results based on a 200-W prototype are provided to verify the theory and design of the proposed converter.

Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables (지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용)

  • Choi, Jong-Kee;Jang, Byung-Tae;An, Yong-Ho;Choi, Sang-Kyu;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

Current Distribution Factor Based Fault Location Algorithms for Double-circuit Transmission Lines (전류분배계수를 사용하는 병행 2회선 송전선로 고장점 표정 알고리즘)

  • Ahn, Yong-Jin;Kang, Sang-Hee;Choi, Myeon-Song;Lee, Seung-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.3
    • /
    • pp.146-152
    • /
    • 2001
  • This paper describes an accurate fault location algorithm based on sequence current distribution factors for a double-circuit transmission system. The proposed method uses the voltage and current collected at only the local end of a single-circuit. This method is virtually independent of the fault resistance and the mutual coupling effect caused by the zero-sequence current of the adjacent parallel circuit and insensitive to the variation of source impedance. The fault distance is determined by solving the forth-order KVL(Kirchhoff's Voltage Law) based distance equation. The zero-sequence current of adjacent circuit is estimated by using a zero-sequence current distribution factor and the zero-sequence current of the self-circuit. Thousands of fault simulation by EMTP have proved the accuracy and effectiveness of the proposed algorithm.

  • PDF

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Advanced Computational Intelligence(ACI) (ACI 기법을 이용한 송전선로 고장 종류 판별에 관한 연구)

  • Park Jae Hong;Lee Jong Beom
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.619-621
    • /
    • 2004
  • This paper presents the rapid and accurate algorithm for fault discrimination in transmission lines. When faults occur in transmission lines, fault discrimination is very important. If high impedance faults occur in transmission lines, it cannot be detected by overcurrent relays. The method using current and voltage cannot discriminate high impedance fault. Because of this reason this paper uses voltage and zero sequence current, and the proposed algorithm uses fuzzy logic method. This algorithm uses voltage and zero sequence current per period in case of faults. Single line ground fault and three-phase fault can be detective using voltage. Two-line ground fault and line to line fault and high impedance can be detected using zero sequence current. To prove the performance of the algorithm, it test algorithm with signal obtained from ATPDraw simulation.

  • PDF

DESIGN AND CONSTRUCTION ASPECTS OF A ZERO INERTIA CVT FOR PASSENGER CARS

  • Van Druten, R.M.;Van Tilborg, P.G.;Rosielle, P.C.J.N.;Schouten, M.J.W.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • This paper concentrates on the design and construction aspects of a transmission for a mid-class passenger car with internal combustion engine. The transmission, consisting of a Continuously Variable Transmission (CVT) with a Van Doorne V-belt, a planetary gear set and a compact steel flywheel is used to prove the concept of mechanical torque assist. The design goal is to obtain a proof of concept transmission with maximal efficiency, using proven transmission technology. With the developed so called Zero Inertia CVT, the fuel economy of the car is improved by operating the engine at its fuel optimal operating line. To achieve a good vehicle acceleration response, the flywheel assists the powertrain mechanically.

  • PDF

A Method for Improving Stopband Characteristics of a Dual-Band Filter

  • Lee, Ja-Hyeon;Lim, Yeong-Seog
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.186-191
    • /
    • 2011
  • This paper presents a simple and effective method for improving stopband rejection characteristics of previously studied dual-band filters. Small electric couplings were applied to the symmetrically positioned shunt resonators, which divided each transmission zero into two transmission zeros without any effect on passbands. We were able to achieve improved stopband rejection characteristics by these additional transmission zeros. For the filter application, we designed a dual-band filter with improved stopband characteristics using microstrip quasi-lumped elements. The electric couplings that control the location of transmission zeros are controlled by the distance between symmetric open stubs of the filter. The filter was fabricated with a relative dielectric constant of 3.5 and a thickness of 0.76 mm. The fabricated filter has a small size ($14.6{\times}13.2{\times}0.76$ mm) and a low insertion loss when compared with conventional filters.