• Title/Summary/Keyword: Transmission Source

Search Result 1,265, Processing Time 0.028 seconds

Molecular Prevalence of Cryptosporidium spp. in Breeding Kennel Dogs

  • Itoh, Naoyuki;Tanaka, Hazuki;Iijima, Yuko;Kameshima, Satoshi;Kimura, Yuya
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.197-200
    • /
    • 2019
  • Cryptosporidium is a common intestinal protozoan that can lead to diarrhea in humans and dogs. The predominant species of infection are C. hominis and C. parvum in humans, and C. canis in dogs. However, C. canis can infect immunocompromised humans. Considering the close contact with humans, dogs have the potential to be reservoirs for human cryptosporidiosis. Breeding kennels are the major supply source of puppies for pet shops. The present study is to determine the molecular prevalence and characteristics of Cryptosporidium spp. found in breeding kennel dogs. A total of 314 fecal samples were collected from young and adult dogs kept in 5 breeding kennels. A polymerase chain reaction targeting the small subunit rRNA gene was employed for the detection of Cryptosporidium spp. To determine the species, the DNA sequences were compared to GenBank data. Overall, 21.0% of the fecal samples were positive for Cryptosporidium spp. infection. Cryptosporidium spp. was detected in all 5 facilities. A sequencing analysis demonstrated that all isolates shared 99-100% similarity with C. canis. The results suggest that Cryptosporidium spp. infection is present at a high-level in breeding kennel dogs. However, because dominant species in this survey was C. canis, the importance of breeding kennel dogs as reservoirs for Cryptosporidium spp. transmission to humans is likely to be low in Japan.

Preliminary Study (1) for Development of Computed Radiography (CR) Image Analysis according to X-ray Non-destructive Test by Wood Species (Computed Radiograhpy (CR)를 통한 목재 수종별 X선 투과 이미지 해석을 위한 기초연구 (1))

  • Song, Jung Il;Kim, Han Seul
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.220-231
    • /
    • 2021
  • The use of digital copies of film-based analog images and the introduction of digital radiographic imaging systems using image plates gradually replace the non-destructive radiationirradiation method of Cultural Heritage. The quality of images obtained from this technique is affected by conditions such as tube voltage, tube current, and exposure time, type of image acquisition medium, distance of the artifacts from the image acquisition medium, and thickness of artifacts. In this study, we evaluated the grayscale image obtained using GE's Computed Radiograhpy (CR) imaging system, the transmission characteristics of the X-ray source for each tree type (pine, chestnut, sawtooth oak, ginkgo) used in wooden Cultural Heritage, and the signal-to-noise ratio (SNR) and contrast. The GE's CR imaging were analyzed using the Duplex wire image quality indicator, line-pair gauges.

An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines (4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구)

  • Choi, Daesik;Kim, Seokwoo;Yeom, Taeyoung;Lee, Seungbae
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.

Profiles of coagulase-positive and -negative staphylococci in retail pork: prevalence, antimicrobial resistance, enterotoxigenicity, and virulence factors

  • Lee, Gi Yong;Yang, Soo-Jin
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.734-742
    • /
    • 2021
  • Objective: The present study aimed to investigate the occurrence and species of coagulase-positive staphylococci (CoPS) and coagulase-negative staphylococci (CoNS) in retail pork meat samples collected during nationwide monitoring. The staphylococcal isolates were characterized for antimicrobial and zinc chloride resistance and enterotoxigenic potential. Methods: A total of 260 pre-packaged pork meat samples were collected from 35 retail markets in 8 provinces in Korea for isolation of staphylococci. Antimicrobial and zinc chloride resistance phenotypes, and genes associated with the resistance phenotypes were determined on the isolates. Furthermore, the presence and distribution of 19 staphylococcal enterotoxin (SE) genes and enterotoxin-like genes among the pork-associated staphylococci were determined by multiplex polymerase chain reaction-based assays using the specific primer sets. Results: A total of 29 staphylococcal strains (29/260, 11.1%) were isolated from samples of retail pork meat, 24 (83%) of which were CoNS. The four CoNS species identified were S. saprophyticus (n = 16, 55%), S. sciuri (n = 3, 10%), S. warneri (n = 3, 10%), and S. epidermidis (n = 2, 7%). Among the 29 isolates, four methicillin-resistant CoNS (MR-CoNS; three S. sciuri and one S. epidermidis) and one methicillin-resistant CoPS (MR-CoPS; one S. aureus) were identified. In addition, a relatively high level of tetracycline (TET) resistance (52%) was confirmed in CoNS, along with a predominant distribution of tet(K). The most prevalent SEs were sep (45%), and sen (28%), which were carried by 81% of S. saprophyticus. Conclusion: These findings suggest that CoNS, especially S. saprophyticus strains, in raw pork meat could be a potential risk factor for staphylococcal food poisoning (SFP), and therefore, requires further investigation to elucidate the role of SEls in SFP and virulence of the pathogen. Our results also suggest that CoNS from raw pork meat may act as a source for transmission of antimicrobial resistance genes such as staphylococcal cassette chromosome mec and tet(K).

A Study on Update of Road Network Using Graph Data Structure (그래프 구조를 이용한 도로 네트워크 갱신 방안)

  • Kang, Woo-bin;Park, Soo-hong;Lee, Won-gi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.193-202
    • /
    • 2021
  • The update of a high-precision map was carried out by modifying the geometric information using ortho-images or point-cloud data as the source data and then reconstructing the relationship between the spatial objects. These series of processes take considerable time to process the geometric information, making it difficult to apply real-time route planning to a vehicle quickly. Therefore, this study proposed a method to update the road network for route planning using a graph data structure and storage type of graph data structure considering the characteristics of the road network. The proposed method was also reviewed to assess the feasibility of real-time route information transmission by applying it to actual road data.

Technical Evaluation of Engineering Model of Ultra-Small Transmitter Mounted on Sweetpotato Hornworm

  • Nakajima, Isao;Muraki, Yoshiya;Mitsuhashi, Kokuryo;Juzoji, Hiroshi;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • The authors are making a prototype flexible board of a radio-frequency transmitter for measuring an electromyogram (EMG) of a flying moth and plan to apply for an experimental station license from the Ministry of Internal Affairs and Communications of Japan in the summer of 2022. The goal is to create a continuous low-dose exposure standard that incorporates scientific and physiological functional assessments to replace the current standard based on lethal dose 50. This paper describes the technical evaluation of the hardware. The signal of a bipolar EMG electrode is amplified by an operational amplifier. This potential is added to a voltage-controlled crystal oscillator (27 MHz, bandwidth: 4 kHz), frequency-converted, and transmitted from an antenna about 10 cm long (diameter: 0.03 mm). The power source is a 1.55-V wristwatch battery that has a total weight of about 0.3 g (one dry battery and analog circuit) and an expected operating time of 20 minutes. The output power is -7 dBm and the effective isotropic radiated power is -40 dBm. The signal is received by a dual-whip antenna (2.15 dBi) at a distance of about 100 m from the moth. The link margin of the communication circuit is above 30 dB within 100 m. The concepts of this hardware and the measurement data are presented in this paper. This will be the first biological data transmission from a moth with an official license. In future, this telemetry system will improve the detection of physiological abnormalities of moths.

Implementation and Verification of Channel Adaptive Private Broadcasting System Based on USRP (USRP기반 채널 적응형 개인방송시스템 구현 및 검증)

  • Yoo, Sinwoo;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.694-702
    • /
    • 2022
  • This paper shows a small and low-powered wireless communication system based on the ATSC broadcasting system using the ISM frequency band that can be used as a PBS(Personal Broadcasting System). It is designed to demonstrate a channel-adaptive CR(Cognitive Radio) system to provide a better service quality in the unlicensed band where co-channel interference exists. And it achieved very reliable communications by a closed-loop active phased array antenna. This ATSC-based personal broadcasting platform can be modified easily with given flexibility by using GNU Radio as an open-source signal processing platform based on USRP and implementing additional functions in FPGA. In addition, the chosen communication frequency resource can be managed and controlled by the return channel that transmits the channel status and communication parameters between transmission and reception in real-time.

Lifetime Escalation and Clone Detection in Wireless Sensor Networks using Snowball Endurance Algorithm(SBEA)

  • Sathya, V.;Kannan, Dr. S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1224-1248
    • /
    • 2022
  • In various sensor network applications, such as climate observation organizations, sensor nodes need to collect information from time to time and pass it on to the recipient of information through multiple bounces. According to field tests, this information corresponds to most of the energy use of the sensor hub. Decreasing the measurement of information transmission in sensor networks becomes an important issue.Compression sensing (CS) can reduce the amount of information delivered to the network and reduce traffic load. However, the total number of classification of information delivered using pure CS is still enormous. The hybrid technique for utilizing CS was proposed to diminish the quantity of transmissions in sensor networks.Further the energy productivity is a test task for the sensor nodes. However, in previous studies, a clustering approach using hybrid CS for a sensor network and an explanatory model was used to investigate the relationship between beam size and number of transmissions of hybrid CS technology. It uses efficient data integration techniques for large networks, but leads to clone attacks or attacks. Here, a new algorithm called SBEA (Snowball Endurance Algorithm) was proposed and tested with a bow. Thus, you can extend the battery life of your WSN by running effective copy detection. Often, multiple nodes, called observers, are selected to verify the reliability of the nodes within the network. Personal data from the source centre (e.g. personality and geographical data) is provided to the observer at the optional witness stage. The trust and reputation system is used to find the reliability of data aggregation across the cluster head and cluster nodes. It is also possible to obtain a mechanism to perform sleep and standby procedures to improve the life of the sensor node. The sniffers have been implemented to monitor the energy of the sensor nodes periodically in the sink. The proposed algorithm SBEA (Snowball Endurance Algorithm) is a combination of ERCD protocol and a combined mobility and routing algorithm that can identify the cluster head and adjacent cluster head nodes.This algorithm is used to yield the network life time and the performance of the sensor nodes can be increased.

SARS-CoV-2 IgG Antibody Seroprevalence in Children from the Amritsar District of Punjab

  • Kaur, Amandeep;Singh, Narinder;Singh, Kanwardeep;Sidhu, Shailpreet Kaur;Kaur, Harleen;Jain, Poonam;Kaur, Manmeet;Jairath, Mohan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.3
    • /
    • pp.173-178
    • /
    • 2022
  • The majority of the children experience milder coronavirus disease 2019 (COVID-19) symptoms. Children represent a significant source of community transmission. Children under 18 years of age account for an estimated 4.8% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections globally. However, no conclusive statements pertaining to the multi-fold aspects of the virus in children could be drawn due to the lower prevalence of pediatric cases. The present study was conducted to identify the indirect impact of SARS-CoV-2 infections on developing herd immunity among children in the age group 3 to 18 years by investigating their antibody levels. In the study, 240 children aged 3~18 years were recruited by the Department of Pediatrics, Government Medical College and Hospital, Amritsar, India, and quantification of the antibodies was performed at the Viral Research and Diagnostic Laboratory (VRDL), Government Medical College (GMC), Amritsar, India. Out of the 240 serum samples, 197 (82.08%) showed seropositivity, while 43 (17.92%) were seronegative. When stratified, it was observed that in the age group 3~6 years, 22.33% of children were found to have anti-SARS-CoV-2 antibodies while in the age groups 7~10 years, 11~14 years, and 15~18 years, respectively, 37.06%, 30.46%, and 10.15% were seropositive. Although there was seroconversion among children which was useful for predicting the next wave, no differences in seropositivity were observed between adults and children.

Energy-Aware Data-Preprocessing Scheme for Efficient Audio Deep Learning in Solar-Powered IoT Edge Computing Environments (태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 에너지 적응형 데이터 전처리 기법)

  • Yeontae Yoo;Dong Kun Noh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.159-164
    • /
    • 2023
  • Solar energy harvesting IoT devices prioritize maximizing the utilization of collected energy due to the periodic recharging nature of solar energy, rather than minimizing energy consumption. Meanwhile, research on edge AI, which performs machine learning near the data source instead of the cloud, is actively conducted for reasons such as data confidentiality and privacy, response time, and cost. One such research area involves performing various audio AI applications using audio data collected from multiple IoT devices in an IoT edge computing environment. However, in most studies, IoT devices only perform sensing data transmission to the edge server, and all processes, including data preprocessing, are performed on the edge server. In this case, it not only leads to overload issues on the edge server but also causes network congestion by transmitting unnecessary data for learning. On the other way, if data preprocessing is delegated to each IoT device to address this issue, it leads to another problem of increased blackout time due to energy shortages in the devices. In this paper, we aim to alleviate the problem of increased blackout time in devices while mitigating issues in server-centric edge AI environments by determining where the data preprocessed based on the energy state of each IoT device. In the proposed method, IoT devices only perform the preprocessing process, which includes sound discrimination and noise removal, and transmit to the server if there is more energy available than the energy threshold required for the basic operation of the device.