• Title/Summary/Keyword: Transmission Power Allocation

Search Result 231, Processing Time 0.026 seconds

An Optimal Power-Throughput Tradeoff Study for MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, Homayoun;Jafarkhani, Hamid
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.334-345
    • /
    • 2010
  • In this paper, we study optimal tradeoffs of achievable throughput versus consumed power in wireless ad-hoc networks formed by a collection of multiple antenna nodes. Relying on adaptive modulation and/or dynamic channel coding rate allocation techniques for multiple antenna systems, we examine the maximization of throughput under power constraints as well as the minimization of transmission power under throughput constraints. In our examination, we also consider the impacts of enforcing quality of service requirements expressed in the form of channel coding block loss constraints. In order to properly model temporally correlated loss observed in fading wireless channels, we propose the use of finite-state Markov chains. Details of fading statistics of signal-to-interference-noise ratio, an important indicator of transmission quality, are presented. Further, we objectively inspect complexity versus accuracy tradeoff of solving our proposed optimization problems at a global as oppose to a local topology level. Our numerical simulations profile and compare the performance of a variety of scenarios for a number of sample network topologies.

Allocation of Real Power losses to Individual Loads Under Competition of Deregulated Power Industries (전력산업의 경쟁체제에서 유효전력 손실을 부하에 배분하는 방법)

  • Ro, Kyoung-soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.114-120
    • /
    • 2004
  • The paper proposes a method calculate the allocations of real power losses in transmission lines to individual loads based on loss distribution factors and compares them with those using marginal loss factors. The proposed method is implemented by defining loss distribution factors and analysing the individual loads' shares in the transmission line losses. Computer simulations on a 9-bus sample system verify effectiveness of the algorithm proposed and give an assertion that it is desirable to allocate power losses to loads using loss distribution factors rather than based on marginal loss factors.

Power Loading Algorithm for Orthogonalized Spatial Multiplexing in Wireless Communications

  • Kim, Young-Tae;Park, Seok-Hwan;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.331-340
    • /
    • 2009
  • In this paper, we propose a new power loading algorithm for orthogonalized spatial multiplexing(OSM) systems over flat-fading multiple-input multiple-output (MIMO) channels. Compared to SVD-based transmission scheme, the OSM scheme exhibits a good system performance with lower complexity and feedback overhead. To further improve the performance in OSM systems with power loading, we introduce a geometric approach on the Euclidean distance between the constellation points in the effective channel. Using this approach, we show that the optimal power loading parameters in terms of the minimum distance can be obtained. Simulation results demonstrate that our algorithm provides a 5dB gain at a bit error rate (BER) of $10^{-4}$ over that of no power loading case with both QPSK and 16-QAM. Consequently, our power loading algorithm allows us to significantly improve the system performance with one additional feedback value.

A simplified method for the determination of the optimal operating patterns in system voltage-reactive power control (전압.무효전력제어에 있어서의 최적운전 목표상태의 간략결정법)

  • 송길영
    • 전기의세계
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 1966
  • The past several years have strongly anticipated the advent of a more integrated system control combining active power and voltage-reactive power controls. This paper presents a new approach to the intergrated system control with primary emphasis on the development of a new control method which combines the conventional economical load dispatching(ELD) and voltage-reactive power controls. The control method, in its fundamental principle, first determines the optimal active power allocation in accordance with the conventional ELD controller. By a proper manipulation of the remaining reactive power sources in the system, the control method then reduces the transmission losses of the system by the adjustment of system voltage distribution and also by the proper allotment of reactive power flows.

  • PDF

A Study on the Allocation Method of Power System Reliability Level under the Deregulated Electricity Market (규제완화된 전력시장 하에서의 전력계통 신뢰도 할당 방법에 관한 연구)

  • Kim, Hong-Sik;Lim, Chae-Hyeun;Choi, Jae-Seok;Lee, Sun-Young;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.394-396
    • /
    • 2000
  • This paper presents a new algorithm for the allocation of the reliability level of composite power system under deregulated electricity market. Under deregulated electricity market, it is required to establish a methodology that can evaluate supply cost and supply reliability of each demand to realize the available priority service reflected a preference of each customer. In this study, a concept of reliability differentiated electricity service as priority service to keep reliability of particular customer within a desirable level is proposed on HLII under deregulated competitive electricity market. The uncertainties of not only generators but also transmission lines are considered for the reliability evaluation in this study. The characteristics and effectiveness of this methodology are illustrated by the case studies on MRBTS and IEEE-RTS.

  • PDF

Resource Allocation Algorithm for Multiple RIS-Assisted UAV Networks (다중 UAV-RIS 네트워크를 위한 자원 할당 알고리즘)

  • Heejae Park;Laihyuk Park
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 2023
  • Unmanned Aerial Vehicles (UAVs) have gained significant attention in 5G and 6G wireless networks due to their high flexibility and low hardware costs. However, UAV communication is still challenged by blockage and energy consumption issues. Reconfigurable Intelligent Surfaces (RISs) have emerged as a promising solution to these challenges, enabling improved spectral efficiency and reduced energy consumption by transmitting signals to users who cannot receive signals because of the obstacles. Many previous studies have focused on minimizing power consumption and data transmission delay through phase shift and power optimization. This paper proposes an algorithm that maximizes the sum rate by including bandwidth optimization. Simulation results demonstrate the effectiveness of the proposed algorithm.

  • PDF

Multiuser Precoding and Power Allocation with Sum Rate Matching for Full-duplex MIMO Relay (전이중 MIMO 릴레이를 위한 다중 사용자 Precoding 및 Sum Rate 정합 기반 전력 할당 기법)

  • Lee, Jong-Ho;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1020-1028
    • /
    • 2010
  • Relay has attracted great attention due to its inherent capability to extend the service coverage and combat shadowing in next generation mobile communication systems. So far, most relay technologies have been developed under the half-duplex (HD) constraint that prevents relays from transmitting and receiving at the same time. Although half-duplex relay (HDR) is easy to implement, it requires partitioning of resource for transmission and reception, reducing the whole system capacity. In this paper, we propose a multinser precoding and power control scheme with sum rate matching for a full-duplex (FD) multiple-input multiple-output (MIMO) relay. Full-duplex relay (FDR) can overcome the drawback of HDR by transmitting and receiving on the same frequency at the same time, while it is crucial to reduce the effect of self-interference that is caused by its own transmitter to its own receiver. The proposed precoding scheme cancels the self-interference of the FDR as well as to support multiuser MIMO. Moreover, we suggest a power allocation scheme for FD MIMO relay with the constraint that the sum rate of the relay's received data streams is equal to that of the relay's transmit data streams.

A Joint Power Allocation and Scheduling Algorithm for CDMA-based High-rate Packet Data Systems (CDMA기반 고속 패킷 데이터 전송 시스템을 위한 전력제어가 결합된 스케쥴링 알고리즘)

  • Koo In-Soo;Kim Ki-Seon
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • In the case of CDMA-based packet data systems such as 1xEV-DO which are designed to support high rate services, BSs transmit data packets with a maximum power based on time multiplexing mode such that only one user can be serviced at a time. In this paper, we propose a joint power allocation and scheduling algorithm for 1xEV-DO-like systems in which we adopt a code division multiplexing (CDM) transmission method in the downlink common channel in order to utilize channel orthogonality such that we can serve more than one user at a time slot especially when there exist remaining resources after serving the firstly selected user by the scheduler. Simulation results demonstrate that the proposed scheme can improve the performances of conventional schemes such as the maximum rate and the proportional fair algorithms.

  • PDF

The uses of Optimal Power Flow in Competitive Electric Power market (경쟁적 전력시장 하에서의 최적조류계산 응용에 관한 연구)

  • Hur, Dong;Park, Jong-Keun;Kim, Balho H.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.379-387
    • /
    • 2001
  • This paper shows that we can make simple modifications to an existing optimal power flow(OPF) algorithm that minimizes generation costs in order to solve the maximization of social welfare objective of the OPF in a competitive electric power market. We have illustrated the potential for the use of OPF in light of the marked impacts on nodal prices and generation/demand allocation levels among competing suppliers. This paper can provide all market players with the transparent information that ensures sufficient control over producers and consumers in case of economic of secure operation with transmission line outage while maximizing the sum of participants social benefit of participating in the electricity energy market.

  • PDF

Bio-MAC: Optimal MAC Protocol for Various Bio-signal Transmission in the WBSN Environment (Bio-MAC: WBSN환경에서 다양한 생체신호 전송을 위한 최적화된 MAC Protocol)

  • Jang, Bong-Mun;Ro, Young-Sin;Yoo, Sun-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.423-425
    • /
    • 2007
  • In this paper, Medium Access Control(MAC) protocol designed for Wireless Body area Sensor Network(Bio-MAC) is proposed, Because in WBSN, the number of node is limited and each node has different characteristics. Also, reliability in transmitting vital data sensed at each node and periodic transmission should be considered so that general MAC protocol cannot satisfy such requirements of biomedical sensors in WBSN. Bio-MAC aims at optimal MAC protocol in WBSN. For this, Bio-MAC used Pattern -SuperFrame, which modified IEE E 802.15.4-based SuperFrame structurely. Bio-MAC based on TDMA uses Medium Access-priority and Pattern eXchange -Beacon method for dynamic slot allocation by considering critical sensing data or power consumption level of sensor no de etc. Also, because of the least delay time. Bio-MAC is suitable in the periodic transmission of vital signal data. The simulation results demonstrate that a efficient performance in WBSN can be achieved through the proposed Bio-MAC.

  • PDF