• 제목/요약/키워드: Transmission Joining

검색결과 68건 처리시간 0.025초

광통신용 APD-FET 광수신모듈 설계 및 제작 (Design and Fabrication of APD-FET Module for 2.5 Gbps Optical Communicating System)

  • 강승구;송민규;윤형진;박경현;박찬용;박형무;윤태열;이창희;심창섭
    • 한국광학회지
    • /
    • 제5권1호
    • /
    • pp.166-172
    • /
    • 1994
  • 2.5 Gbps급 장거리 광통신 시스템에 소요되는 단일모우드 광섬유 부착 APD-FET 광수신모듈을 설계 및 제작하였다. 본 논문에서는 광수신모듈 제작시 고려해야 할 광학적, 전기적, 기계적 설계 및 제작 그리고 모듈의 특성평가에 대해 설명하였다. 광학적으로는 GRIN rod 렌즈와 경사 연마된 단일모우드 광섬유를 갖는 단일렌즈계로 구성하였으며 기계적으로는 광부품의 견고한 조립을 위해 레이저 용접법을 도입하였고 전기적으로는 Avalenche Photo Diode로부터의 소신호를 증폭하기 위한 GaAs FET 전치층폭기를 내장 하였다. 모듈 제작후 성능평가에서는 2.5 Gbps 속도에서 223-1의 길이를 갖는 입력광신호에 대해 $10^{-10}$ Bit Error Rate 조건에서 모듈 수신감도가 -30.3dBm으로 측정되어 국제전신전화 자문 위원회의 규격인 -26dBm은 물론 한국통신규격인 상온 -30dBm을 만족시키는 결과를 얻었다. 본 연구에서의 성공적인 모듈제작은 2.5 Gbps 광통신용 광수신모듈ㄹ의 실용화는 물론 앞으로 10 Gbps급 광통신용 광수신모듈 제작에 대한 밝은 전망을 보여주는 것이다.

  • PDF

VoIP Network에서 Mobile IP 분석 및 설계 (An Analysis and modeling of Mobile IP network in VoIP Network)

  • 엄기복;여현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.414-418
    • /
    • 2003
  • VoIP는 voice와 data를 packet 형태로 통합하여 실시간으로 전송하는 기술이다. 최근 VoIP는 voice와 data를 통합하는 핵심 기술로 발전하고 있다. VoIP 기술 중에서 SIP는 VoIP에서 사용하는 H.323 처럼 real time Call 서비스를 위한 signaling protocol이다. 하지만 mobile user를 고려할 때 VoIP는 Mobile IP와 같은 기술과 결합이 절대적으로 필요하다. Mobile IP는 Mobile host가 인터넷상에서 임의의 위치에 접속하더라도 자신의 address로 transport되는 packet을 수신 할 수 있도록 IP 프로토콜을 확장한 기술이다. VoIP Network에서 Mobile service를 위해 해결해야 할 중요한 과제는 Delay 개선이다. 특히, VoIP 서비스가 Mobile IP와 결합할 경우 Delay 때문에 optimal service를 지원하지 못할 수 있다. This paper에서는 지금까지 연구된 방법과는 달리 SIP를 이용하여 Delay를 개선하였다. 본 연구결과는 현재 진행중인 IP 패킷을 이용한 wired/wireless Integrated service에 활용할 수 있도록 하였다.

  • PDF

고강도강 용접금속의 미세조직에 따른 기계적 특성 변화 연구 (Variation of Mechanical Properties according to Microstructure of High Strength Steel Weld Metal)

  • 이재희;김상훈;윤병현;정홍철;이창희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.70-70
    • /
    • 2010
  • In the present study, to estimate the mechanical properties of 800 MPa grade weld metal, welding was carried out using 800 and 600 MPa grade flux cored arc welding (FCAW) consumable and characteristics of the weld metals were investigated. The chemical composition of weld metals was investigated by an optical emission spectroscopy (OES) method. The microstructure of weld metals was analyzed by optical microscopy (OM) and secondary electron microscopy (SEM). The compositions and sizes of inclusions which are the dominant factors for the nuclei of acicular ferrite were analyzed by an transmission electron microscopy (TEM). In addition, mechanical properties of the weld metals were evaluated through tensile tests and charpy impact tests. Mostly the acicular ferrite phase which has high strength and toughness was observed. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 73% acicular ferrite and 27% low temperature phase (bainite, martensite). Toughness was considerably decreased due to the increase of tensile strength (from 600 MPa to 800 MPa). The sizes of inclusions which were observed in both weld metal were $0.4{\sim}0.8\;{\mu}m$, it is effective size to form acicular ferrite.

  • PDF

마찰접합 된 A6063 합금의 미세조직과 기계적 특성 평가 (Evaluation of the Microstructures and Mechanical Properties on Friction Welded A6063 Alloy)

  • 김은혜;조형환;송국현
    • 한국재료학회지
    • /
    • 제27권5호
    • /
    • pp.276-280
    • /
    • 2017
  • This study was carried out to evaluate the developed microstructures and mechanical properties of friction welded A6063 alloy. For this work, specimens were prepared at a size of 12 mm ${\O}{\times}80mm$, and friction welding was carried out at a rotation speed of 2,000 RPM, friction pressure of $12kgf/cm^2$ and upset pressure of $25kgf/cm^2$. To perform an analysis of the grain boundary characteristic distributions, such as the grain size, orientation and misorientation angle distributions, the electron back-scattering diffraction method was used. In addition, in order to identify the dispersed intermetallic compounds of the base and welded materials, transmission electron microscopy was used. The experimental results found that the application of friction welding on A6063 led to significant grain refinement of the welded zone relative to that of the base material. Besides this, intermetallic compounds such as AlMnSi and $Al_2Cu$ were found to be dispersed with more refined size relative to that of the base material. This formation retains the mechanical properties of the welds, which results in the fracture aspect at the base material zone. Therefore, based on the developed microstructures and mechanical properties, the application of friction welding on A6063 could be used to obtain a sound weld zone.

Effect of Cu-Additions on the Hand-Over Layer of an Aluminum Alloy - Hardening for the Top Ring Groove of Automotive Piston by the Plasma Transferred Arc Welding Process -

  • Moon, J.H.;Seo, C.J.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • 제1권1호
    • /
    • pp.58-62
    • /
    • 2001
  • The surface of AC8A Ah alloy was modified by adding the Cu powder using a Plasma Transferred Arc (PTA) welding process. Under the optimum fabricating conditions, the modified surface of AC8A Ah alloy was observed to possess the sound microstructure with a minimum porosity. Hardness and wear resistance properties of the as-fabricated alloy were compared with those of the 76 heat-treated one. In case of the as-fabricated alloy, the hardness of the modified layer was twice that of the matrix region. Although significant increase in the hardness of the matrix region was observed after T6 heat treatment, the hardness of the modified layer was not observed to change. The wear resistance of the modified layer was significantly increased compared to that of the matrix region. The microstructure of a weld zone and the matrix region were investigated using the optical microscope, scanning electron microscope (SEM), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). The primary and eutectic silicon in the weld zone were finer and more curved than in the matrix region, while some precipitates has had been found therein. According to the TEM observation, the predominant precipitate present in the weld zone was the $\theta$'phase, which is precipitated during cooling by rapid solidification in PTA welding process. Improvement of hardness and wear properties in the weld zone in the as-fabricated condition can be explained based on the presence of $\theta$’precipitates and fine primary and eutectic silicon distribution.

  • PDF

배추흰나비 (Pieris rapae L.)의 미세구조(微細構造)에 관한 연구(硏究) I . 배관(背管)의 미세구조(微細構造) (Ultrastructural Studies on the Cabbage Butterfly, Pieris rapae L. I . Fine Structure on the Dorsal Vessel)

  • 김창환;김우갑;이근옥
    • Applied Microscopy
    • /
    • 제15권1호
    • /
    • pp.71-85
    • /
    • 1985
  • The ultrastructure on the dorsal vessel of 5-day-old cabbage butterfly, Pieris rapae L., was carried out using the transmission and scanning electron microscope. The results are as follows. 1) The aorta. The aorta is simple tubular type and consists of the inner and outer membrane of the myocardium and thick myocardium is located between them. However the inner membrane with $0.26{\mu}m$ thickness and outer membrane with $0.08{\mu}m$ are composed of fibrous materials, the former is composed of low and high densed fibrous materials and the latter appears homogeneous layer. The myocardium consists of typical striated muscles. The sarcomere with $1.6{\mu}m$ length and in cross section, each thick filaments are surrounded by $7{\sim}8$ thin filaments. The intercalated disc is joining the end of the two muscle cells, desmosomes and septate junctions are appeared between the neighboring muscle cells. 2) The heart. The heart composing of myocardium enclosed by its inner and outer membrane as the aorta has a series of well formed segmental chamber. The arrangement of myofilaments, cell adhensions and membrane elements are observed as same as at the aorta. The inner membrane of the heart is deeply invaginated into the myocardium than the outer membrane and a lot of well developed mitochondria with rod shape are aggregated in the folds. The longitudinally and transversely oriented tubule system formed by invagnation of the sarcolemma into the muscle bundle is built up dyad with the sarcoplasmic reticulum as the aorta. The slit is formed by deeply invagination of the inner membrane of myocadium toward the muscle layer and then the inner and outer membrane of myocardium are fused. Therefore, the ostium is formed between the myocardium and situated at the lateral side of the myocardium.

  • PDF

다중 MCS MARS와 RSVP를 통한 효율적인 IP 멀티캐스팅 메커니즘 (IP Multicasting Mechanism using RSVP over MARS Architecture based on Multiple MCSs)

  • 김진수;양해권
    • 한국정보통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.55-61
    • /
    • 2002
  • 실시간 인터넷 멀티미디어 서비스들은 고속의 데이터 전송과 QoS, 멀티캐스트를 요구한다. 인터넷의 하부구조인 ATM 망에서 IP 멀티캐스트를 지원하기 위한 방안으로 MARS가 제안되었으며, 또한 최선형 서비스 기반의 인터넷에서 서비스의 품질을 보장하기 위하여 자원예약 신호 프로토콜인 RSVP가 제안되었다. 본 논문에서는 단일 MCS기반의 MARS가 가지는 단점들을 보완하기 위해 2개 이상의 MCS를 가지는 다중 MCS MARS기반의 ATM 망에서 클러스터내의 ATM 호스트가 특정 IP 멀티캐스트 그룹에 가입할 경우MARS가 종단간 전송지연을 최소화하는 MCS를 할당하여 송신자와 수신자간에 최소의 전송지연을 가질 수 있도록 하였다. 그리고 자원을 예약하기 위한 Resv메시지를 MARS가 수신했을 때 자원예약 메시지를 처리할 수 있도록 그 기능이 확장된 MARS는 유지하고 있는 MCS 관리 table을 참조하여 MCS를 재 선정함으로써 MCS가 유지하고 있는 병합된 QoS를 변경시키지 않고 MARS와 MCS의 처리 부하를 줄일 수 있는 방안을 제시하고자 한다.

Al-Si 도금된 보론강과 Zn 도금된 DP강 TWB 레이저 용접부내의 Al-편석부 미세조직에 미치는 핫스탬핑 열처리의 영향 (Effect of Hot-stamping Heat Treatment on the Microstructure of Al-Segregated Zone in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel)

  • 정병훈;공종판;강정윤
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.455-462
    • /
    • 2012
  • Al-Si coated boron steel and Zn coated DP steel plates were laser-welded to manufacture a Tailor Welded Blank (TWB) for a car body frame. Hot-stamping heat treatment ($900^{\circ}C$, 5 min) was applied to the TWB weld, and the microstructural change and transformation mechanism were investigated in the Al-rich area near the bond line of the Al-Si coated steel side. There was Al-rich area with a single phase, $Fe_3(Al,Si)$, which was transformed to ${\alpha}-Fe$ (Ferrite) after the heat treatment. It could be explained that the $Fe_3(Al,Si)$ phase was transformed to ${\alpha}-Fe$ during heat treatment at $900^{\circ}C$ for 5 min and the resultant ${\alpha}-Fe$ phase was not transformed by rapid cooling. Before the heat treatment, the microstructures around the $Fe_3(Al,Si)$ phase consisted of martensite, bainite and ${\alpha}-Fe$ while they were transformed to martensite and ${\delta}-Fe$ after the heat treatment. Due to the heat treatment, Al was diffused to the $Fe_3(Al,Si)$ and this resulted in an increase of Al content to 0.7 wt% around the Al-rich area. If the weld was held at $900^{\circ}C$ for 5 min it was transformed to a mixture of austenite (${\gamma}$) and ${\delta}-Fe$, and only ${\gamma}$ was transformed to the martensite by water cooling while the ${\delta}-Fe$ was remained unchanged.