• Title/Summary/Keyword: Transmission Electron Microscope(TLM)

Search Result 3, Processing Time 0.016 seconds

Characteristics of Contact resistivity on RTP annealing temperature and time after Plasma ion implant (플라즈마 이온주입 후 RTP 열처리 온도와 시간에 따른 접촉저항 특성)

  • Choi, Jang-Hun;Do, Seung-Woo;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.5-6
    • /
    • 2009
  • In this paper, plasma ion implant is performed with $PH_3$ gas diluted by helium gas on P-type Si wafer (100). Spike Rapid Thermal Processing(RTP) annealing performed for 30~60 sec from $800\;^{\circ}C$ to $1000\;^{\circ}C$ in $N_2+O_2$ ambient. Crystalline defect is analyzed by Transmission Electron Microscope(TEM) and Double crystal X-ray Diffraction(DXRD). Contact resistivity($\rho c$), contact resistance(Rc) and sheet resistance(Rs) are analyzed by measuring Transfer Length Method(TLM) using 4155C analysis. As annealing temperature increase, Rs decrease and ${\rho}c$ and Rc increase at temperature higher than $850\;^{\circ}C$. We achieve low Rs, ${\rho}c$ and Rc with Plasma ion implant and spike RTP.

  • PDF

Ohmic contact formation of single crystalline 3C-SiC for high temperature MEMS applications (초고온 MEMS용 단결정 3C-SiC의 Ohmic Contact 형성)

  • Chung, Gwiy-Sang;Chung, Su-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • This paper describes the ohmic contact formation of single crystalline 3C-SiC thin films heteroepitaxially grown on Si(001) wafers. In this work, a TiW (Titanium-tungsten) film as a contact matieral was deposited by RF magnetron sputter and annealed with the vacuum and RTA (rapid thermal anneal) process respectively. Contact resistivities between the TiW film and the n-type 3C-SiC substrate were measured by the C-TLM (circular transmission line model) method. The contact phases and interface the TiW/3C-SiC were evaulated with XRD (X-ray diffraction), SEM (scanning electron microscope) and AES (Auger electron spectroscopy) depth-profiles, respectively. The TiW film annealed at $1000^{\circ}C$ for 45 sec with the RTA play am important role in formation of ohmic contact with the 3C-SiC substrate and the contact resistance is less than $4.62{\times}10^{-4}{\Omega}{\cdot}cm^{2}$. Moreover, the inter-diffusion at TiW/3C-SiC interface was not generated during before and after annealing, and kept stable state. Therefore, the ohmic contact formation technology of single crystalline 3C-SiC using the TiW film is very suitable for high temperature MEMS applications.

Ohmic contact characteristics of polycrystalline 3C-SiC for high-temperature MEMS applications (초고온 MEMS용 다결정 3C-SiC의 Ohmic Contact 특성)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.386-390
    • /
    • 2006
  • This paper describes the ohmic contact formation of polycrystalline 3C-SiC films deposited on thermally grown Si wafers. In this work, a TiW (titanium tungsten) film as a contact material was deposited by RF magnetron sputter and annealed with the vacuum process. The specific contact resistance (${\rho}_{c}$) of the TiW contact was measured by using the C-TLM (circular transmission line method). The contact phase and interfacial reaction between TiW and 3C-SiC at high-temperature as also analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscope). All of the samples didn't show cracks of the TiW film and any interfacial reaction after annealing. Especially, when the sample was annealed at $800^{\circ}$ for 30 min., the lowest contact resistivity of $2.90{\times}10{\Omega}cm^{2}$ was obtained due to the improved interfacial adhesion. Therefore, the good ohmic contact of polycrystalline 3C-SiC films using the TiW film is very suitable for high-temperature MEMS applications.