• 제목/요약/키워드: Translocator protein

검색결과 20건 처리시간 0.023초

Etifoxine for Pain Patients with Anxiety

  • Choi, Yun Mi;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • 제28권1호
    • /
    • pp.4-10
    • /
    • 2015
  • Etifoxine (etafenoxine, $Stresam^{(R)}$) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by $GABA_A{\alpha}2$ receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to ${\beta}2$ or ${\beta}3$ subunits of the $GABA_A$ receptor complex. It also modulates $GABA_A$ receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates $GABA_A$ receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.

The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

  • Joo, Hee Kyoung;Lee, Yu Ran;Kang, Gun;Choi, Sunga;Kim, Cuk-Seong;Ryoo, Sungwoo;Park, Jin Bong;Jeon, Byeong Hwa
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1064-1070
    • /
    • 2015
  • Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10-100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO ($0.1-0.5{\mu}m$), a specific mitochondrial antioxidants, and cyclosporin A ($1-5{\mu}m$), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam ($1-50{\mu}m$), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.

Ligand and Dimerization Dependent Transactivation Capability of Aromatic Hydrocarbon Receptor

  • Park, Hyun-Sung
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.279-287
    • /
    • 1999
  • The aromatic hydrocarbon receptor (AhR) is a cytosolic protein that binds the environmental pollutant, dioxin. The liganded AhR translocates into the nucleus where it heterimerizes with a constitutive nuclear protein, AhR nuclear translocator (Arnt). The N-terminal regions of both AhR and Arnt contain basic helix-loop-helix (bHLH) and Per-AhR-Arnt-Sim (PAS) motifs that are required for DNA binding, dimerization, and ligand binding whereas the C-terminal regions of both AhR and Arnt contain transactivation domains. Here, results from the mammalian two-hybrid system indicate that Arnt can make a homodimer but AhR cannot. In the presence of dioxin, the interaction between AhR and Arnt is stronger than that of the Arnt homodimer, suggesting that Arnt prefers to make a heterodimer with the liganded AhR rather than a homodimer. Transfection analyses using the GAL4-driven reporter system suggest that AhR's N-terminal region represses its own transactivation domain, as well as exogenous transactivation domains such as Sp 1 and VP16. Interestingly, the repressed transactivation domains of AhR are activated by ligand-dependent heterodimerization with Arnt. These observations suggest that heterodimerzation with Arnt is necessary not only for DNA binding but also for activation of the repressed transactivation capability of AhR.

  • PDF

A PAS-Containing Histidine Kinase is Required for Conidiation, Appressorium Formation, and Disease Development in the Rice Blast Fungus, Magnaporthe oryzae

  • Shin, Jong-Hwan;Gumilang, Adiyantara;Kim, Moon-Jong;Han, Joon-Hee;Kim, Kyoung Su
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.473-482
    • /
    • 2019
  • Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most important diseases in rice production. PAS (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, single-minded protein) domains are known to be involved in signal transduction pathways, but their functional roles have not been well studied in fungi. In this study, targeted gene deletion was carried out to investigate the functional roles of the PAS-containing gene MoPAS1 (MGG_02665) in M. oryzae. The deletion mutant ΔMopas1 exhibited easily wettable mycelia, reduced conidiation, and defects in appressorium formation and disease development compared to the wild type and complemented transformant. Exogenous cAMP restored appressorium formation in ΔMopas1, but the shape of the restored appressorium was irregular, indicating that MoPAS1 is involved in sensing the hydrophobic surface. To examine the expression and localization of MoPAS1 in M. oryzae during appressorium development and plant infection, we constructed a MoPAS1:GFP fusion construct. MoPAS1:GFP was observed in conidia and germ tubes at 0 and 2 h post-infection (hpi) on hydrophobic cover slips. By 8 hpi, most of the GFP signal was observed in the appressoria. During invasive growth in host cells, MoPAS1:GFP was found to be fully expressed in not only the appressoria but also invasive hyphae, suggesting that MoPAS may contribute to disease development in host cells. These results expand our knowledge of the roles of PAS-containing regulatory genes in the plant-pathogenic fungus M. oryzae.

Overexpression of twin-arginine translocation (TAT) pathway conferred immunity to Xanthomonas oryzae v. oryzae in rice

  • Nino, Marjohn C.;Song, Jae-Young;Nogoy, Franz Marielle;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.166-166
    • /
    • 2017
  • OsTAT encodes a twin-arginine translocator (TAT) pathway signal protein. It contains a TRANS membrane domain and a chloroplast transit peptide. mRNA transcription profiling of OsTAT1 revealed that it is highly overexpressed in the leaves corroborating reports on its role in chloroplast. Moreover, its level of expression is more pronounced during earlier stages (germination, 3-leaf stage, and maximum tillering) of growth in rice. A lower disease progress curve of bacterial blight is evident in transgenic lines compared with the wild type, Dongjin indicating its involvement in immunity to Xoo. Expression pattern following infection of Xoo strain K2 depicts highest levels at 4 and 8 hour post-inoculation which implies crucial induction of resistance during early response. This study initially reports a new overview on the biological functions of plant's TAT pathway. Further molecular and genetic analyses are underway to provide detailed involvement of OsTAT in disease resistance.

  • PDF

Role of HIV Vpr as a Regulator of Apoptosis and an Effector on Bystander Cells

  • Moon, Ho Suck;Yang, Joo-Sung
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.7-20
    • /
    • 2006
  • The major event in human immunodeficiency virus type 1 (HIV-1) infection is the death of many cells related to host immune response. The demise of these cells is normally explained by cell suicide mechanism, apoptosis. Interestingly, the decrease in the number of immune cells, such as non-CD4+ cells as well as CD4+ T cells, in HIV infection usually occurs in uninfected bystander cells, not in directly infected cells. It has, therefore, been suggested that several soluble factors, including viral protein R (Vpr), are released from the infected cells and induce the death of bystander cells. Some studies show that Vpr interacts directly with adenine nucleotide translocator (ANT) to induce mitochondrial membrane permeabilization (MMP). The MMP results in release of some apoptogenic factors such as cytochrome-c (cyt-c) and apoptosis-inducing factor (AIF). Vpr also has indirect effect on mitochondria through enhancing the level of caspase-9 transcription and suppressing nuclear factor-kappa B (NF-${\kappa}B$). The involvement of p53 in Vpr-induced apoptosis remains to be studied. On the other hand, low level of Vpr expression has anti-apoptotic effect, whereas it's high level of expression induces apoptosis. Extracellular Vpr also exhibits cytotoxicity to uninfected bystander cells through apoptotic or necrotic mechanism. The facts that Vpr has cytotoxic effect on both infected cells and bystander cells, and that it exhibits both proand anti-apoptotic activity may explain its role in viral survival and disease progression.

Protective Effect of Right Ventricular Mitochondrial Damage by Cyclosporine A in Monocrotaline-induced Pulmonary Hypertension

  • Lee, Dong Seok;Jung, Yong Wook
    • Korean Circulation Journal
    • /
    • 제48권12호
    • /
    • pp.1135-1144
    • /
    • 2018
  • Background and Objectives: Mitochondria play a key role in the pathophysiology of heart failure and mitochondrial permeability transition pore (MPTP) play a critical role in cell death and a critical target for cardioprotection. The aim of this study was to evaluate the protective effects of cyclosporine A (CsA), one of MPTP blockers, and morphological changes of mitochondria and MPTP related proteins in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). Methods: Eight weeks old Sprague-Dawley rats were randomized to control, MCT (60 mg/kg) and MCT plus CsA (10 mg/kg/day) treatment groups. Four weeks later, right ventricular hypertrophy (RVH) and morphological changes of right ventricle (RV) were done. Western blot and reverse transcription polymerase chain reaction (RT-PCR) for MPTP related protein were performed. Results: In electron microscopy, CsA treatment prevented MCT-induced mitochondrial disruption of RV. RVH was significantly increased in MCT group compared to that of the controls but RVH was more increased with CsA treatment. Thickened medial wall thickness of pulmonary arteriole in PAH was not changed after CsA treatment. In western blot, caspase-3 was significantly increased in MCT group, and was attenuated in CsA treatment. There were no significant differences in voltage-dependent anion channel, adenine nucleotide translocator 1 and cyclophilin D expression in western blot and RT-PCR between the 3 groups. Conclusions: CsA reduces MCT induced RV mitochondrial damage. Although, MPTP blocking does not reverse pulmonary pathology, it may reduce RV dysfunction in PAH. The results suggest that it could serve as an adjunctive therapy to PAH treatment.

Expressed Sequence Tag Analysis for Identification and Characterization of Sex-Related Genes in the Giant Tiger Shrimp Penaeus monodon

  • Preechaphol, Rachanimuk;Leelatanawit, Rungnapa;Sittikankeaw, Kanchana;Klinbunga, Sirawut;Khamnamtong, Bavornlak;Puanglarp, Narongsak;Menasveta, Piamsak
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.501-510
    • /
    • 2007
  • Sex-related genes expressed in vitellogenic ovaries of the giant tiger shrimp, Penaeus monodon, were identified by an EST approach. A total of 1051 clones were unidirectionally sequenced from the 5 terminus. Nucleotide sequences of 743 EST (70.7%) significantly matched known genes previously deposited in the GenBank (E-value <$10^{-4}$) whereas 308 ESTs (29.3%) were regarded as newly unidentified transcripts (E-value >$10^{-4}$). A total of 559 transcripts (87 contigs and 472 singletons) were obtained. Thrombospondin (TSP) and peritrophin (79 and 87 clones accounting for 7.5 and 8.3% of clones sequenced, respectively) predominated among characterized transcripts. everal full length transcripts (e.g. cyclophilin, profillin and thioredoxin peroxidase) were also isolated. A gene homologue encoding chromobox protein (PMCBX, ORF of 567 nucleotides encoding a protein of 188 amino acids) which is recognized as a new member of the HP1 family was identified. Expression patterns of 14 of 25 sex-related gene homologues in ovaries and testes of P. monodon broodstock were examined by RT-PCR. Female sterile and ovarian lipoprotein receptor homologues were only expressed in ovaries whereas the remaining transcripts except disulfide isomerase related P5 precursor and adenine nucleotide translocator 2 were higher expressed in ovaries than testes of P. monodon broodstock. A homologue of ubiquitin specific proteinase 9, X chromosome (Usp9X) revealed a preferential expression level in ovaries than testes of broodstock-sized P. monodon (N = 13 and 11, P<0.05) but was only expressed in ovaries of 4-month-old shrimp (N = 5 for each sex).

Synthesis and biological evaluation of tricarbonyl technetium labeled 2-(4-chloro)phenyl-imidazo[1,2-a]pyridine analog (99mTc-CB257) as a TSPO-binding ligand

  • Choi, Ji Young;Jung, Jae Ho;Song, In Ho;Moon, Byung Seok;Lee, Byung Chul;Kim, Sang Eun
    • 대한방사성의약품학회지
    • /
    • 제4권2호
    • /
    • pp.73-79
    • /
    • 2018
  • In our previous study, tricarbonyl $^{99m}Tc$-labeled TSPO-binding ligand, named $^{99m}Tc$-CB256, having positively charge (+1) was investigated but did not show promising results in in vivo environment despite of a nanomolar binding affinity for TSPO. Because the overall positively charge of $^{99m}Tc$-CB256 would likely interrupt its target protein uptake, we herein designed the neutral tricarbonyl-$^{99m}Tc$ labeled TSPO-binding ligand ($^{99m}Tc$-CB257, 1). $^{99m}Tc$-CB257 was prepared by the facile incorporation of the $[^{99m}Tc(CO)_3]^+$ into a N-(hydroxycarbonylmethyl)-2-picoly moiety in CB257. The radiochemical yield of $^{99m}Tc$-CB257 after HPLC purification was $54.1{\pm}2.4%$ (decay corrected, n = 3). The authentic Re-CB257 (2) was synthesized by using $(NEt_4)_2[Re(CO)_3Br_3]$ in 69.0% yield. The binding affinity of 2 for TSPO was measured in leukocyte and showed approximately 280 times higher than that observed for the positively charged (+1) ligand, Re-CB256 ($K_i=0.57{\pm}0.06nM$ versus $159.3{\pm}8.7nM$, respectively). Our results indicated that 1 can be considered potentially as a new SPECT radiotracer for TSPO-rich cancer and provides the foundation for further in vivo evaluation related with abnormal TSPO-overexpression environments.

Effect of PEG chain additive on 6,8-dichloro-2-phenylimidazo[1,2-a] pyridineacetamide (CB185) as a TSPO-binding ligand

  • Lee, Won Chang;Lee, Sang Hee;Denora, Nunzio;Laquintana, Valentino;Lee, Byung Chul;Kim, Sang Eun
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.89-100
    • /
    • 2019
  • In our previous studies, we developed a 18F-labeled TSPO-binding ligand, named [18F]CB251, which has been proved to be a promising TSPO-binding PET radiotracer for the detection and monitoring of TSPO expression in pathological diseases. (Ki = 0.27 nM for TSPO, 1.96% ID/g of tumor uptake at 1h post-injection) Based on these results, we utilized 6,8-dichloro-2-phenylimidazo[1,2-a]pyridineacetamide analogs, CB185 (1) as a targeting moiety for the selective delivery of probes and anticancer molecules to TSPO-overexpressed tissues. In this study, we designed CB185 derivatives contains different PEG chains (n = 1, 3 and 5) and fluorescence dye (Cy5) to identify the necessary space between a TSPO-binding ligand and an anticancer agent. Three CB185 derivatives (11a-c) which contains Cy5 and PEG chain, were synthesized and the effect of PEG additive on their TSPO-binding affinities were evaluated using in vitro assays. The binding affinity for compounds 11a-c was lower than that of PK11195 (Ki = 3.2 nM), but still characterized by nanomolar binding affinity for TSPO (Ki = 46.5 nM for 11a, 51.0 nM for 11b, and 388.5 nM for 11c). These results showed that the conjugates are characterized by a moderate binding affinity toward TSPO except for compound 11c, which PEG chain consist of five PEG monomers. Our finding might add useful information to decide the appropriate PET chain length for developing new TSPO-targeting drug carriers.