• Title/Summary/Keyword: Translational neuroscience

Search Result 13, Processing Time 0.03 seconds

Expression of Proteasome Activator REGγ in Human Laryngeal Carcinoma and Associations with Tumor Suppressor Proteins

  • Li, Li-Ping;Cheng, Wei-Bo;Li, Hong;Li, Wen;Yang, Hui;Wen, Ding-Hou;Tang, Yue-Di
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2699-2703
    • /
    • 2012
  • The functional significance of the proteasome activator $REG{\gamma}$ in the regulation of cell proliferation and apoptosis has been recognized. However, pathological contributions to tumor development remain to be elucidated. Both oncogenic proteins and tumor suppressors are targeted by $REG{\gamma}$ for proteasomal degradation. It has been proposed that the role of the $REG{\gamma}$ in the pathogenesis of cancer is cell- and context-specific. In this study, we aimed to explore the potential involvement of $REG{\gamma}$ in laryngeal carcinomas, comparing protein expression in tumor and adjacent tissues by immunohistochemical staining and Western blot analysis. We also characterized the correlation between the expression of $REG{\gamma}$ and the previously identified substrates p53 and p21. We showed that $REG{\gamma}$ was abnormally highly expressed in cancer tissues. Statistical analysis revealed that there was a positive relationship between the level of $REG{\gamma}$ and the expression of p53 and p21. Our study suggests that $REG{\gamma}$ overexpression can facilitate the growth of laryngeal cancer cells.

Strategies for Clinical Application of Neuroscience Findings (뇌·신경과학 분야 연구결과의 임상 적용을 위한 방안)

  • Cho, Han Byul;Kim, Young Hoon;Yeom, Arim;Yoon, Sujung
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.3
    • /
    • pp.113-117
    • /
    • 2015
  • Psychiatry has progressed with neurobiological basis, providing individually tailored treatment, preventing mental illness, and managing public mental health. Foundational knowledge that may contribute to the development of psychiatry and neuroscience has been attained through continual national and international investment in research. However, this knowledge obtained from neurobiological research is not being applied to clinical practice proactively. This may be due to a lack of support for translational research connecting neuroscience with clinical practice, and a lack of development and availability of educational programs for clinical psychiatrists. To solve these problems, it is essential to support translational research conducted by clinicians and to establish an appropriate reward system. Considering the direction of progress in psychiatry and the demand from clinicians, appropriate investment in research and education programs that provide neurobiological knowledge applicable to clinical practice is required. Researchers and educators must also communicate and collaborate to deliver neurobiological findings effectively.

Dexamethasone induces the expression of LRRK2 and α-synuclein, two genes that when mutated cause Parkinson's disease in an autosomal dominant manner

  • Park, Ji-Min;Ho, Dong-Hwan;Yun, Hye Jin;Kim, Hye-Jung;Lee, Chan Hong;Park, Sung Woo;Kim, Young Hoon;Son, Ilhong;Seol, Wongi
    • BMB Reports
    • /
    • v.46 no.9
    • /
    • pp.454-459
    • /
    • 2013
  • LRRK2 (leucine-rich repeat kinase 2) has been identified as a gene corresponding to PARK8, an autosomal-dominant gene for familial Parkinson's disease (PD). LRRK2 pathogenic-specific mutants induce neurotoxicity and shorten neurites. To elucidate the mechanism underlying LRRK2 expression, we constructed the LRRK2-promoter-luciferase reporter and used it for promoter analysis. We found that the glucocorticoid receptor (GR) transactivated LRRK2 in a ligand-dependent manner. Using quantitative RT-PCR and Western analysis, we further showed that treatment with dexamethasone, a synthetic GR ligand, induced LRRK2 expression at both the transcriptional and translational levels, in dopaminergic MN9D cells. Dexamethasone treatment also increased expression of ${\alpha}$-synuclein, another PD causative gene, and enhanced transactivation of the ${\alpha}$-synuclein promoter-luciferase reporter. In addition, dexamethasone treatment to MN9D cells weakly induced cytotoxicity based on an LDH assay. Because glucocorticoid hormones are secreted in response to stress, our data suggest that stress might be a related factor in the pathogenesis of PD.

Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

  • Kim, Ki Chan;Gonzales, Edson Luck;Lazaro, Maria T.;Choi, Chang Soon;Bahn, Geon Ho;Yoo, Hee Jeong;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.207-243
    • /
    • 2016
  • Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.

Impaired Hippocampal Synaptic Plasticity and Enhanced Excitatory Transmission in a Novel Animal Model of Autism Spectrum Disorders with Telomerase Reverse Transcriptase Overexpression

  • Rhee, Jeehae;Park, Kwanghoon;Kim, Ki Chan;Shin, Chan Young;Chung, ChiHye
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.486-494
    • /
    • 2018
  • Recently, we have reported that animals with telomerase reverse transcriptase (TERT) overexpression exhibit reduced social interaction, decreased preference for novel social interaction and poor nest-building behaviors-symptoms that mirror those observed in human autism spectrum disorders (ASD). Overexpression of TERT also alters the excitatory/inhibitory (E/I) ratio in the medial prefrontal cortex. However, the effects of TERT overexpression on hippocampal-dependent learning and synaptic efficacy have not been investigated. In the present study, we employed electrophysiological approaches in combination with behavioral analysis to examine hippocampal function of TERT transgenic (TERT-tg) mice and FVB controls. We found that TERT overexpression results in enhanced hippocampal excitation with no changes in inhibition and significantly impairs long-term synaptic plasticity. Interestingly, the expression levels of phosphorylated CREB and phosphorylated $CaMKII{\alpha}$ were significantly decreased while the expression level of $CaMKII{\alpha}$ was slightly increased in the hippocampus of TERT-overexpressing mice. Our observations highlight the importance of TERT in normal synaptic function and behavior and provide additional information on a novel animal model of ASD associated with TERT overexpression.

Neural Substrates of Fear Based on Animal and Human Studies (공포의 신경 기저 회로 : 동물과 인간 대상 연구를 중심으로)

  • Baek, Kwangyeol;Jeong, Jaeseung;Park, Min-Sun;Chae, Jeong-Ho
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.4
    • /
    • pp.254-264
    • /
    • 2008
  • Objectives : The neural substrate of fear is thought to be highly conserved among species including human. The purpose of this review was to address the neural substrates of fear based on recent findings obtained from animal and human studies. Methods : Recent studies on brain regions related to fear, particularly fear conditioning in rodents and humans, were extensively reviewed. Results : This paper suggests high consistency in anatomical structure and physiological mechanisms for fear perception, response, learning and modulation in animals and humans. Conclusions : Fear is manifested and modulated by well conserved neural circuits among species interconnected with the amygdala, such as the hippocampus and the ventromedial prefrontal cortex. Further research is required to incorporate findings from animal studies into a better understanding of neural circuitry of fear in human in a translational approach.

  • PDF

Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells

  • Moon, Jung-Il;Han, Min-Joon;Yu, Shin-Hye;Lee, Eun-Hye;Kim, Sang-Mi;Han, Kyuboem;Park, Chang-Hwan;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.324-329
    • /
    • 2019
  • Recent progress in cellular reprogramming technology and lineage-specific cell differentiation has provided great opportunities for translational research. Because virus-based gene delivery is not a practical reprogramming protocol, protein-based reprogramming has been receiving attention as a safe way to generate reprogrammed cells. However, the poor efficiency of the cellular uptake of reprogramming proteins is still a major obstacle. Here, we reported key factors which improve the cellular uptake of these proteins. Purified red fluorescent proteins fused with 9xLysine (dsRED-9K) as a cell penetrating peptide were efficiently delivered into the diverse primary cells. Protein delivery was improved by the addition of amodiaquine. Furthermore, purified dsRED-9K was able to penetrate all cell lineages derived from mouse embryonic stem cells efficiently. Our data may provide important insights into the design of protein-based reprogramming or differentiation protocols.

Identification of Potential Substrates of N-acteylglucosamine Kinase by a Proteomic Approach (프로테오믹스를 이용한 N-아세틸글루코사민 인산화효소 기질단백질의 동정)

  • Lee, HyunSook;Moon, Il Soo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.586-594
    • /
    • 2013
  • Post-translational O-GlcNAc modification (O-GlcNAcylation) of serine or threonine is a new protein modulation mechanism. In contrast to the classical glycosylation, O-GlcNAcylation occurs in a one-step transfer of O-GlcNAc on both nuclear and cytoplasmic proteins. In contrast to the general consensus that O-GlcNAc is a final modification, a recent paper (J Proteome Res. 2011 10:2725-2733) showed the presence of O-GlcNAc-P on a synaptic assembly protein AP180. This finding raises a fundamental question about its prevalence. To address this question, we used proteomics to identify those proteins that were phospho-signal enriched by GlcNAc kinase (NAGK). Comparison of pDsRed2-$NAGK_{WT}$-transfected HEK293T cell extract with pDsRed2-$NAGK_{D107A}$-transfected control culture revealed 15 phospho-signal increased spots. Excluding those spots that had no detectable amount of protein expression yielded 7 spots, which were selected for ID determination. Among these, two duplicate spots (two $HSP90{\beta}$ and two ENO1 spots) were shown to be O-GlcNAcylated, two (dUTP nucleotidohydrolase mitochondrial isoform 2, glutathione S-transferase P) were not known to be involved in O-GlcNAcylation, and one (heat shock protein gp96 precursor or grp94) was a glycoprotein. The increase in the phospho-levels of O-GlcNAc by NAGK strongly indicates that these proteins are phosphorylated on O-GlcNAc. Our present data support the idea that O-GlcNAc is not a terminal modification.