• Title/Summary/Keyword: Translation surface

Search Result 114, Processing Time 0.021 seconds

Molecular Phylogeny and Morphology of Mycosphaerella nawae, the Causal Agent of Circular Leaf Spot on Persimmon

  • Lee, Seung-Yeol;Lim, Yang-Sook;Jung, Hee-Young
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.191-201
    • /
    • 2016
  • In this study, the phylogeny and morphology of Mycosphaerella nawae (Dothideomycetes, Ascomycota) were examined using Korean and Japanese isolates, to establish the phylogenetic relationship between M. nawae and its allied species. Korean and Japanese isolates of M. nawae were collected from circular leaf spot-diseased leaves and were confirmed based on internal transcribed spacer (ITS) sequence data. Phylogenetic analysis was conducted using multiple genes, including the ITS region, 28S rDNA, ${\beta}-tubulin$, translation elongation $factor-1{\alpha}$, and actin genes. Our results revealed that M. nawae is closely related to members of the genus Phaeophleospora but are distant from the Ramularia spp. In addition, microscopic analysis revealed pseudothecia on the adaxial and abaxial surface of overwintered diseased leaves (ODL) and only on the abaxial surface of diseased leaves. Ascospores are oval to fusiform, one-septate, tapered at both ends, $1.7{\sim}3.1{\times}8.1{\sim}14.1{\mu}m$, and were observed in ODL. Conidia are oval, guttulate, one-septate, $3.5{\sim}4.9{\times}12.8{\sim}19.8{\mu}m$, and barely discernable on 30-day cultures. To our knowledge, this is the first report on the phylogeny of M. nawae, which is closely related to the genus Phaeophleospora, especially P. scytalidii.

27-Hydroxycholesterol induces macrophage gene expression via LXR-dependent and -independent mechanisms

  • Kim, Bo-Young;Son, Yonghae;Cho, Hyok-rae;Lee, Dongjun;Eo, Seong-Kug;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2021
  • 27-Hydroxycholesterol (27OHChol) exhibits agonistic activity for liver X receptors (LXRs). To determine roles of the LXR agonistic activity in macrophage gene expression, we investigated the effects of LXR inhibition on the 27OHChol-induced genes. Treatment of human THP-1 cells with GSK 2033, a potent cell-active LXR antagonist, results in complete inhibition in the transcription of LXR target genes (such as LXRα and ABCA1) induced by 27OHChol or a synthetic LXR ligand TO 901317. Whereas expression of CCL2 and CCL4 remains unaffected by GSK 2033, TNF-α expression is further induced and 27OHChol-induced CCL3 and CXCL8 genes are suppressed at both the transcriptional and protein translation levels in the presence of GSK 2033. This LXR antagonist downregulates transcript levels and surface expression of CD163 and CD206 and suppresses the transcription of CD14, CD80, and CD86 genes without downregulating their surface levels. GSK 2033 alone had no effect on the basal expression levels of the aforementioned genes. Collectively, these results indicate that LXR inhibition leads to differential regulation of 27-hydroxycholesterol-induced genes in macrophages. We propose that 27OHChol induces gene expression and modulates macrophage functions via LXR-dependent and -independent mechanisms.

Control Strategies for Landing Quadcopters on Ships with Legged Platform Based on Impedance Control (선박 위 착륙을 위한 임피던스 제어기반 쿼드콥터 족형 랜딩플랫폼 제어 전략)

  • Hwang, Seonghyeon;Lee, Seunghyeon;Jin, Seongho;Lee, Inho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2022
  • In this paper, we propose a legged landing platform for the quadcopter taking off and landing in the ship environment. In the ship environment with waves and winds, the aircraft has risks being overturned by contact impact and excessive inclination during landing on the ship. This landing platform has four landing legs under the quadcopter for balancing and shock relief. In order to make the quadcopter balanced on ships, the position of each end effector was controlled by PID control. And shocks have mainly happened when quadcopter contacts the ship's surface as well as legs move fast. Hence, impedance control was used to cope with the shocks. The performance of the landing platform was demonstrated by a simulation and a prototype in three sea states based on a specific size of a ship. During landing and tracking the slope of the ship's surface, oscillations of rotation and translation from the shock were mitigated by the controller. As a result, it was verified that transient response and stability got better by adding impedance control in simulation models and prototype experiments.

Detailed Analysis of Thrust Plume and Satellite Base Region Interaction (인공위성 플룸과 기저면의 상호 작용에 관한 해석)

  • Kim, Jae-Gang;Kwon, Oh-Joon;Lee, Kyun-Ho;Kim, Su-Kyum;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1056-1062
    • /
    • 2008
  • The interaction between thrust plume and satellite base region was investigated by using direct simulate Monte-Carlo calculations. For the accurate simulation of N2 and H2 collisions and rotation-translation transition, a variable soft-sphere model and a recent rotational relaxation model of N2 and H2 were used. For the investigation of the interaction between thrust plume and base region, the number density distribution for each species, translational and rotational temperature distributions, heat flux, and pressure were examined by direct simulation of Monte-Carlo calculations. It was found that most of the surface properties are affected by H2 collisions and a strong non-equilibrium state is observed at the base region. It was demonstrated that an accurate model is needed to simulate H2 collisions and the rotation-translation transition. The results by the present calculation are more accurate than previous direct simulation Monte-Carlo calculations because more accurate rotational relaxation models were used in simulating the inelastic collisions.

First Report of Peach Fruit Rot Caused by Fusarium avenaceum in Korea (Fusarium avenaceum에 의한 복숭아 신규 과실 썩음병 발생 보고)

  • Heo, A Yeong;Koo, Young Mo;Choi, Young-Joon;Kim, Sang Hee;Chung, Gyu Young;Choi, Hyong Woo
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2020
  • In July 2019, typical rot symptom was observed on peach fruits harvested from the fields at Andong, Korea. As the disease progressed, white and purple colored mycelial mat developed on the surface of the infected fruits. A causal pathogen was isolated from the infected fruit and cultured on potato dextrose agar media for identification. Fungal colonies on potato dextrose agar produced 3 pigments, including purple, yellow, and white colors. The isolate incited fruit rot symptoms on artificially inoculated peach fruits, from which the same fungus was isolated, fulfilling Koch's postulates. Based on the morphological characteristics and sequence analysis of rDNA internal transcribed spacer, translation elongation factor 1-alpha, and β-tubulin, the causal agent of the disease was identified as Fusarium avenaceum. This study is the first report of fruit rot of peach fruits caused by Fusarium avenaceum in Korea.

Intermediate-Term Clinical Outcomes after Autologous Osteochondral Transplantation for Lateral Osteochondral Lesions of the Talus (외측 거골 골연골 병변에 대한 자가 골연골 이식술 후의 중기 추시 임상결과)

  • Sung-Hoo Kim;Byung-Ki Cho
    • Journal of Korean Foot and Ankle Society
    • /
    • v.27 no.4
    • /
    • pp.137-143
    • /
    • 2023
  • Purpose: Autologous osteochondral transplantation (AOT) is indicated for patients with a large osteochondral lesion of the talus (OLT), accompanying subchondral cyst, and the failure of bone marrow stimulation (BMS) procedures. Despite the many reports on the clinical results of surgical treatment for medial osteochondral lesions, those of lateral lesions are rare. This paper reports the intermediate-term clinical outcomes after AOT for lateral OLTs. Materials and Methods: Twenty-one patients with lateral OLTs were followed up for at least three years after AOT. The clinical evaluations comprised the Foot and Ankle Outcome Score (FAOS) and Foot and Ankle Ability Measure (FAAM). The radiographic assessment included the irregularity of the articular surface (subchondral plate), the progression of degenerative arthritis, and the changes in talar tilt angle and anterior talar translation. Results: The mean FAOS and FAAM scores improved significantly from 42.1 to 89.5 and 39.5 to 90.6 points, respectively, at the final follow-up (p<0.001). The radiological evaluation revealed two cases (9.5%) of articular step-off ≥2 mm and 1 case (4.8%) of progressive arthritis. The mean talar tilt angle and anterior talar translation improved significantly. As postoperative complications, there was one case of a local wound problem, one case of superficial peroneal nerve injury, and one case of donor site morbidity. At a mean follow-up of 62.3 months, no patient showed a recurrence of instability or required reoperation for OLT. Conclusion: AOT for the lateral OLTs demonstrated satisfactory intermediate-term clinical outcomes, including daily and sports activity abilities. Most OLT could be accessed through lateral ligament division and capsulotomy, and the incidence of iatrogenic complications, such as recurrent sprains or chronic instability, was minimal. AOT appears to be an effective and relatively safe treatment for patients with large lateral osteochondral lesions unresponsive to conservative therapy, with subchondral cysts, or with failed primary BMS.

A Study on the Radiation Characteristics of Microstrip Array Antennas on the Nonplanar Surface (곡면에서의 마이크로스트립 어레이 안테나의 복사 특성에 관한 연구)

  • 구연건;이정수;고광태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.2
    • /
    • pp.121-136
    • /
    • 1989
  • In this paper, an attempt has been made to analyze the theoretically and verify experimentally the effect of curvature on the radiation characteristics of microstrip array antennas mounted conformally on the concave surface and the convex surface of the cylindrical body. The analysis of single element microstrip antenna is made by using the analysis method of Transmission Line Model. The theory of array antennas is established by application of the method of transformed coordinates, in which the translation and the ratation about each single element arrayed two-demensionally on the nonplanar surface are under consideration, and it is investigated by computation of the synthetic electric field strength in the far zone. In addition, various radiation characteristics, such as return loss, resonant frequency, radiation pattern, half-power, beamwidth, gain, are measrued and compared with the theroetical values according to the variation of curvature, by designing and building 4-element array microstrip antenna operating at 10 GHz, and microstrip feed lines. As predicted in theroy, it is verified that radiation pattern of antennas mounted on the concave and the convex surfaces alike broadens as the radius of curvature decreases. And for the curved surfaces, aggrement between computed values of the total synthetic radiation power pattern by the method of transformed coordinates and measured valuse is good. Besides, it is found that resonant frequency, input impedance and gain are hardly affected by the radius of curvature.

  • PDF

HK Curvature Descriptor-Based Surface Registration Method Between 3D Measurement Data and CT Data for Patient-to-CT Coordinate Matching of Image-Guided Surgery (영상 유도 수술의 환자 및 CT 데이터 좌표계 정렬을 위한 HK 곡률 기술자 기반 표면 정합 방법)

  • Kwon, Ki-Hoon;Lee, Seung-Hyun;Kim, Min Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • In image guided surgery, a patient registration process is a critical process for the successful operation, which is required to use pre-operative images such as CT and MRI during operation. Though several patient registration methods have been studied, we concentrate on one method that utilizes 3D surface measurement data in this paper. First, a hand-held 3D surface measurement device measures the surface of the patient, and secondly this data is matched with CT or MRI data using optimization algorithms. However, generally used ICP algorithm is very slow without a proper initial location and also suffers from local minimum problem. Usually, this problem is solved by manually providing the proper initial location before performing ICP. But, it has a disadvantage that an experience user has to perform the method and also takes a long time. In this paper, we propose a method that can accurately find the proper initial location automatically. The proposed method finds the proper initial location for ICP by converting 3D data to 2D curvature images and performing image matching. Curvature features are robust to the rotation, translation, and even some deformation. Also, the proposed method is faster than traditional methods because it performs 2D image matching instead of 3D point cloud matching.

STUDY ON HIGH RESOLUTION SCHEMES SUITABLE FOR AN 3-D CFD CODE(POWERCFD) USING UNSTRUCTURED CELL-CENTERED METHOD AND INTERFACE CAPTURING METHOD (비정렬 셀 중심방법 및 경계면포착법을 사용하는 3차원 유동해석코드(PowerCFD)에 적합한 HR 해법에 관한 연구)

  • Myong, H.K.;Kim, J.E.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • Several high resolution schemes such as OSHER, MUSCL, SMART, GAMMA, WACEB and CUBISTA are comparatively studied with respect to the accurate capturing of fluid interfaces throughout the application to two typical test cases of a translation test and a collapsing water column problem with a return wave. It is accomplished by implementing the high resolution schemes in the in-house CFD code(PowerCFD) for computing 3-D flow with an unstructured cell-centered method and an interface capturing method, which is based on the finite-volume technique and fully conservative. The calculated results show that SMART scheme gives the best performance with respect to accuracy and robustness.

AERODYNAMIC OPTIMIZATION OF SUPERSONIC WING-NACELLE CONFIGURATION USING AN UNSTRUCTURED ADJOINT METHOD

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.60-65
    • /
    • 2000
  • An aerodynamic design method has been developed by using a three-dimensional unstructured Euler code and an adjoint code with a discrete approach. The resulting adjoint code is applied to a wing design problem of super-sonic transport with a wing-body-nacelle configuration. Hicks-Henne shape functions are adopted far the surface geometry perturbation, and the elliptic equation method is employed fer the interior grid modification during the design process. Interior grid sensitivities are neglected except those for design parameters associated with nacelle translation. The Sequential Quadratic Programming method is used to minimize the drag with constraints on the lift and airfoil thickness. Successful design results confirm validity and efficiency of the present design method.

  • PDF