• Title/Summary/Keyword: Transitional parameter

Search Result 19, Processing Time 0.025 seconds

On Subgrid-Scale Models for Large-Fddy Simulation of Turbulent Flows (난류유동의 큰 에디 모사를 위한 아격자 모델)

  • Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1523-1534
    • /
    • 2000
  • The performance of a number of existing dynamic subgrid-scale(SGS) models is evaluated in large-eddy simulations(LES) of two prototype transitional and turbulent shear flows, a planar jet and a channel flow. The dynamic SGS models applied include the dynamic Smagorinsky model(DSM);Germano et al. 1991, Lully 1992), the dynamic tow-component model(DTM; Akhavan et al. 2000), the dynamic mixed model(DMM;Zang et al, 1993). and the dynamic two-parameter model(DTPM; Salvetti & Banerjee 1995). The results are compared with those for DNS for their evaluation. The LES results demonstrate the superior performance of DTM with use of a sharp cutoff filter and DMM with use of a box filter, as compared to their respect counterpart DSM, in predicting the mean statistics, spectra and large-scale structure of the flow, Such features of DTM and DMM derive from the construction of the models in which tow separate terms are included to represent the SGS interactions; a Smagorinsky edd-viscosity term to account for the non-local interactions, and a local-interaction term to account for the nonlinear dynamics between the resolved and subgrid scales in the vicinity of the LES cutoff. As well, overall the SGS models using a sharp cutoff filter are more successful than those using a box filter in capturing the statistics and structure of the flow. Finally, DTPM is found to be compatible or inferior to DMM.

Characterization of Non-linear Consolidation of Dredged Soil from Incheon Area (인천 지역 준설토의 비선형 압밀특성 연구)

  • Oak, Young-Suk;An, Yong-Hoon;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1693-1706
    • /
    • 2008
  • It is of importance to determine the zero effective stress void ratio($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-liner finite strain consolidation behavior for ultra-soft dredged materials. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of very soft soil deposits, and acts as a starting point for self-weight consolidation in the non-linear finite strain numerical analysis such as PSDDF. In this paper, a new method for determining the zero effective stress void ratio has been introduced with the aid of measuring electrical resistivity of the specimen. A correlation between the zero effective stress void ratio and the initial slurry void ratio has been proposed, which can be used in PSDDF analysis as an input parameter. Combining all of the accessible experimental data, the consolidation characteristics of a dredged soil from the Incheon area has been studied in detail.

  • PDF

Chain Ordering Effects in the Nematic-Isotropic Phase Transition of Polymer Melts

  • Han Soo Kim;Hyungsuk Pak;Song Hi Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.199-206
    • /
    • 1991
  • A statistical thermodynamic theory of thermotropic main-chain polymeric liquid crystalline melts is developed within the framework of the lattice model by a generalization of the well-known procedure of Flory and DiMarzio. According to the results of Vasilenko et al., the theory of orientational ordering in melts of polymers containing rigid and flexible segments in the main chain is taken into account. When the ordering of flexible segments in the nematic melt is correlated with that of rigid mesogenic groups, the former is assumed to be given as a function of the ordering of rigid mesogenic cores. A free energy density that includes short-range packing contributions is formulated. The properties of the liquid-crystalline transiton are investigated for various cases of the system. The results calculated in this paper show not only the order-parameter values but also the first-order phase transition phenomena that are similar to those observed experimentally for the thermotropic liquid-crystalline polymers and show the transitional entropy terms which actually increase upon orientational ordering. In the orientational ordering values, it is shown that mesogenic groups, flexible segments, and gauche energy (temperature) may be quite substantial. Finally, by using the flexibility term, we predict the highly anisotropic mesophase which was shown by Vasilenko et al.

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

Star-forming Dwarf Galaxies in Filamentary Structures around the Virgo Cluster

  • Rey, Soo-Chang;Chung, Jiwon;Kim, Suk;Lee, Youngdae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.69.3-70
    • /
    • 2021
  • We present the chemical properties of star-forming dwarf galaxies (SFDGs) in five filamentary structures (Leo II A, Leo II B, Leo Minor, Canes Venatici, and Virgo III) around the Virgo cluster using the Sloan Digital Sky Survey optical spectroscopic data and Galaxy Evolution Explorer ultraviolet photometric data. We investigate the relationship between stellar mass, gas-phase metallicity, and specific star formation rate (sSFR) of SFDGs in the Virgo filaments in comparison to those in the Virgo cluster and field. We find that, at a given stellar mass, SFDGs in the Virgo filaments show lower metallicity and higher sSFR than those in the Virgo cluster on average. We observe that SFDGs in the Virgo III filament show enhanced metallicities and suppressed star formation activities comparable to those in the Virgo cluster, whereas SFDGs in the other four filaments exhibit similar properties to the field counterparts. Moreover, about half of the galaxies in the Virgo III filament are found to be morphologically transitional dwarf galaxies that are supposed to be on the way to transforming into quiescent dwarf early-type galaxies. Based on the analysis of the galaxy perturbation parameter, we propose that the local environment represented by the galaxy interactions might be responsible for the contrasting features in "chemical pre-processing" found in the Virgo filaments.

  • PDF

Ultraviolet Color-Magnitude Relations of Early-type Dwarf Galaxies in the Viro Cluster

  • Kim, Suk;Rey, Soo-Chang;Sung, Eon-Chang;Jerjen, Helmut;Lisker, Thorsten;Lee, Youngdae;Chung, Jiwon;Yi, Wonhyeong;Park, Mina
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.47.2-47.2
    • /
    • 2013
  • We present ultraviolet (UV) color-magnitude relations (CMRs) of early-type dwarf galaxies in the Viro cluster, combining Galaxy Evolution Explorer (GALEX) UV data with SDSS optical data, based on the Extended Virgo Cluster catalog (EVCC). We find that dwarf lenticular galaxies (dS0s) show a surprisingly distinct and tight locus separated from that of ordinary dEs, which is not clearly seen in previous CMRs. The dS0s in UV CMRs follow a steeper sequence than dEs and show bluer UV-optical color at a given magnitude. We explore the observed CMRs with population models of a luminosity-dependent delayed exponential star formation history. The observed CMR of dS0s is well matched by models with relatively long delayed star formation. The dS0s are most likely transitional objects at the stage of subsequent transformation of late-type progenitors to ordinary red dEs in the cluster environment. Most early type dwarf galaxies with blue UV colors (FUV-r < 6 and NUV-r < 4) are identified as those showing spectroscopic hints of recent or ongoing star formation activities. In any case UV photometry provides a powerful teel to disentangle the diverse subpopulations of early-type dwarf galaxies and uncover their evolutionary histories. lenticular galaxies, and irregular high surface brightness (HSB) galaxies, respectively. Dwarf elliptical galaxies and dwarf irregular LSB galaxies occupy the similar structural parameter spaces. We suggest that giant elliptical galaxies and dwarf elliptical galaxies may have different origin.

  • PDF

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit -Part I: Parameter Estimation for Analysis (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 -Part I: 해석 물성치 평가)

  • Kwak, Tae-Hoon;Lee, Chul-Ho;Lim, Jee-Hee;An, Yong-Hoon;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.13-24
    • /
    • 2011
  • The renowned Terzaghi's one-dimensional consolidation theory is not applicable to quantification of time-rate settlement for highly deformable soft clays such as dredged soil deposits. To deal with this special condition, a non-linear finite strain consolidation theory should be adopted to predict the settlement of dredged soil deposits including self-weight and surcharge-induced consolidation. It is of importance to determine the zero effective stress void ratio ($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-linear finite strain consolidation behavior for deformable dredged soil deposits. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of dredged soils. In this paper, laboratory procedures and equipments are introduced to measure such key parameters in the non-linear finite strain consolidation analysis. In addition, the non-linear finite strain consolidation parameters of the Incheon clay and kaolinite are evaluated with the aid of the proposed methods in this paper, which will be used as input parameters for the non-linear finite strain consolidation analyses being performed in the companion paper.

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.