• Title/Summary/Keyword: Transition Reynolds Number

Search Result 151, Processing Time 0.025 seconds

The Study of Turbulence Model of Low-Reynolds Number Flow (저 레이놀즈수 유동장에서의 난류모델에 관한 연구)

  • Yoo C.;Lee J. S.;Kim C.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.172-177
    • /
    • 2004
  • In the present work, we have interests on the modification of parallel implemented with MPI(Message Passing Interface) programming method, 3-Dimensional, unsteady, incompressible Navier-Stokes equation solver to analyze the low-Reynolds number flow In order to accurate calculation aerodynamic coefficients in low-Reynolds number flow field, we modified the two-equation turbulence model. This paper describes the development and validation of a new two-equation model for the prediction of flow transition. It is based on Mentor's low Reynolds $\kappa-\omega$ model with modifications to include Total Stresses Limitation (TSL) and Separation Transition Trigger (STT)

  • PDF

A COMPARATIVE STUDY OF TWO AND THREE DIMENSIONAL LOW REYNOLDS NUMBER FLOW (2차원 및 3차원 저레이놀즈수 유동 해석 비교 연구)

  • Lee, Jae-Hun;Jung, Kyoung-Jin;Lee, Kil-Tae;Kang, In-Mo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.3-7
    • /
    • 2009
  • In this study, two and three dimensional low Reynolds number flows are compared. For the two dimensional flow, an airfoil was considered and for the three dimensional low wing and full-body aircraft were considered. Because a flight condition of the aircraft is in a low Reynolds number flow, itl requires reflecting flow transition. In the two dimensional analysis, transition is predicted using en method. In the three dimensional flow, the effect of transition is included using k-w SST turbulence models.

  • PDF

A flow characteristic of non-newtonian fluid in coutte flow of concentric cylinder (동심원통속의 Coutte flow에 있어서 비 Newton 유체의 유동특성)

  • 권혁칠;이성노;부전유사
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.109-114
    • /
    • 1992
  • The purpose of this study is to experimentally research the effects of polymer additives on turbulent transition of Couette flow between concentric cylinders when outer one is rotating and inner one is at rest; the diameter ratio being 0.2. Aqueous polymer solution generate the degradation phenomena in machine forming work, but this is not effected in about 10 minute at 5ppm. aqueous polymer solution testing. The Reynolds number, referred to the gap distance and rotation velocity of the outer cylinder, of turbulent transition is about 20000 for water flow. In the laminer region, the torque value is as same as theoretical one in the region of low Reynolds number, but becomes high with an increase in the Reynolds number. The polymer additives reduce the Reynolds number for turbulent transtition. In the turbulent region, the torque is remarkably reduced by the polymer additives, soluble polymer take down effect of turbulent transition boundary torque.

  • PDF

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model (저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석)

  • Choi, Chang Ho;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

Transition Flow Analysis According to the Change of Reynolds Number for Supersonic Launch Vehicle Fairing Expansion Area (초음속 발사체 선두 팽창부의 레이놀즈수 변화에 따른 천이 유동 해석)

  • Shin, Ho-Cheol;Park, Soo-Hyung;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.367-375
    • /
    • 2017
  • RANS computational analysis was performed on the head of the launch vehicle including the hammerhead nose pairing in the supersonic regime. The two-dimensional axisymmetric analysis was performed by using laminar, fully turbulent and transition models and compared with the experimental data. It was observed that different flow phenomena occurred depending on the Reynolds number. Under the high Reynolds number condition, the boundary layer becomes turbulent, which is not separated from the surface of the launch vehicle. With the low Reynolds number condition, laminar separation bubble was produced due to the separation and reattachment of the boundary layer on the expansion-compression edge of the hammerhead type nose fairing. The three-dimensional computations with the angle of attack showed a fully detached vortical structure due to the laminar separation bubble. It is proved that the turbulent transition should be considered to predict the separation bubble with the Reynolds number.

Influence of Reynolds Number and Scale on Performance Evaluation of Lift-type Vertical Axis Wind Turbine by Scale-model Wind Tunnel Tests

  • Tanino, Tadakazu;Nakao, Shinichiro;Miyaguni, Takeshi;Takahashi, Kazunobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.229-234
    • /
    • 2011
  • For Lift-type Vertical Axis Wind Turbine (VAWT), it is difficult to evaluate the performance through the scale-model wind tunnel tests, because of the scale effect relating to Reynolds number. However, it is beneficial to figure out the critical value of Reynolds number or minimum size of the Lift-type VAWT, when designing this type of micro wind turbine. Therefore, in this study, the performance of several scale-models of Lift-type VAWT (Reynolds number : $1.5{\times}10^4$ to $4.6{\times}10^4$) was investigated. As a result, the Reynolds number effect depends on the blade chord rather than the inlet velocity. In addition, there was a transition point of the Reynolds number to change the dominant driving force from Drag to Lift.

Numerical study on Reynolds number effects on the aerodynamic characteristics of a twin-box girder

  • Laima, Shujin;Wu, Buchen;Jiang, Chao;Chen, Wenli;Li, Hui
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.285-298
    • /
    • 2019
  • For super long-span bridges, the aerodynamic forces induced by the flow passing the box girder should be considered carefully. And the Reynolds number sensitively of aerodynamic characteristics is one of considerable issue. In the study, a numerical study on the Reynolds number sensitivity of aerodynamic characteristic (flow pattern, pressure distribution and aerodynamic forces) of a twin-box girder were carried out using large eddy simulation (LES) with the dynamic Smagorinsky-Lilly subgrid model. The results show that the aerodynamic characteristics have strong correlation with the Reynolds number. At the leading edge, the flow experiences attachment, departure, and reattachment stages accompanying by the laminar transition into turbulence, causing pressure plateaus to form on the surface, and the pressure plateaus gradually shrinks. Around the gap, attributing that the flow experiences stages of laminar cavity flow, the wake with alternate shedding vortices, and turbulent cavity flow in sequence with an increase in the Reynolds number, the pressures around the gap vary greatly with the Reynold number. At the trailing edge, the pressure gradually recovers as the flow transits to turbulence (the flow undergoes wake instability, shear layer transition-reattachment station), In addition, at relative high Reynolds numbers, the drag force almost does not change, however, the lift force coefficient gradually decreases with an increase in Reynolds number.

Experimental Study on the Helical Flow Field in a Concentric Annulus with Rotating Inner Cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적 연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.822-833
    • /
    • 2000
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow has been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

Experimental Study for Ferrofluid Couette Flow between Two Coaxial Spheres (동축 구 사이의 자성 유체의 Couette 유동에 관한 연구)

  • 구도연;하옥남;전운학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 1996
  • This study investigated torque characteristics for Couette flow experimentally under circumstaces that ferrofluids were between two coaxial spheres. Torque measurement was obtained for the situation where the inner sphere was rotating while the outer sphere was kept stationary. The magnetic field was imposed on the fluid, using a bar magnet which was inserted in the inner sphere. In the laminar flow region the torque increase when the magnetic field is applied and the critical Reynolds number is increased. However, in the transition regime, the effect of the magnetic field on the torque characteristics decrease as Reynolds number increases. The value of torque were the same as those of glycerine solution beyond the cirtical Reynolds number. We also made experimental equation which could obtain coefficient of torque within critical Reynolds number in terms of sphere spacing Reynolds number and magnetic properties of ferrofluid.

  • PDF