• 제목/요약/키워드: Transition Force

검색결과 344건 처리시간 0.02초

플로팅 슬래브궤도와 일반 콘크리트궤도 접속구간에서의 열차 주행 안전, 승차감 및 궤도 사용성 평가 (Assessment of Train Running Safety, Ride Comfort and Track Serviceability at Transition between Floating Slab Track and Conventional Concrete Track)

  • 장승엽;양신추
    • 한국철도학회논문집
    • /
    • 제15권1호
    • /
    • pp.48-61
    • /
    • 2012
  • 열차 진동 저감을 위한 플로팅 슬래브궤도의 설계에 있어서 주행 안전, 승차감 및 사용성을 확보하는 것이 매우 중요하다. 본 연구에서는 플로팅 슬래브궤도에서 열차 주행안전과 승차감, 사용성 확보를 위한 요구조건을 분석하여 제시하였고, 열차-궤도 상호작용을 고려한 동적 해석기법을 적용하여 시스템 고유진동수, 스프링 지지간격 및 배치방법, 감쇠비 등 주요 시스템 설계변수에 따라 일반 콘크리트궤도와의 접속구간을 포함한 플로팅 슬래브궤도 구간에서의 열차 및 궤도의 동적 거동을 분석하였다. 연구결과에 따르면 일반 궤도와 플로팅슬래브궤도 간의 접속구간에서의 지지강성의 차이에 의해 윤중 변동율, 레일 응력, 레일 인상력 등의 동적 응답이 크게 증가하는 것으로 나타났으며, 따라서 접속구간에서 스프링 지지간격을 좁히거나 스프링 강성의 차이를 완화시키는 방안이 주행안전과 궤도 사용성 확보를 위해 효과적인 것으로 나타났다. 한편 차체 가속도로 평가하는 승차감은 접속구간에서의 지지강성의 차이에 의해서는 거의 영향을 받지 않고, 시스템 튜닝 주파수에 의해 가장 큰 영향을 받는 것으로 나타났으며, 승차감 확보를 위해서는 적절한 시스템 튜닝 주파수를 선정하는 것이 매우 중요한 것으로 나타났다. 이 밖에 감쇠비, 스프링 간격, 열차속도에 따른 영향을 분석하였다.

정보기술을 적용한 무기체계의 적기 전력화 방안 (Timely Force Integration Method for Weapon System Using the Intelligence Technology)

  • 양병희
    • 한국국방경영분석학회지
    • /
    • 제29권2호
    • /
    • pp.131-147
    • /
    • 2003
  • The complexity of modern weapon systems using the intelligence technology demands that rapid and effective transition from force requirements to deployment and fielding. Thus this paper deals with the integration of development procedure, evolutionary acquisition, integrated test and evaluation, improvement of the requirements decision process, use of commercial products of high quality and low cost, specification deviation, and the effective use of dual use technology. In general, decision­makers, and military field users shall first consider the moving technology rapidly into use. This study is aimed to improve the defence acquisition management directive for timely force integration of weapon system.

가변 강성 엑츄에이터인 재밍 메커니즘의 힘 체인 안정성 분석 (Force Chain Stability Analysis in Jamming Mechanism for Variable Stiffness Actuator)

  • 이정수;조영준;구자춘
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.326-332
    • /
    • 2019
  • In the case of conventional soft robots, the basic stiffness is small due to the use of flexible materials. Therefore, there is a limitation that the load that can bear is limited. In order to overcome these limitations, a study on a variable stiffness method has been conducted. And it can be seen that the jamming mechanism is most effective in increasing the stiffness of the soft robot. However, the jamming mechanism as a method in which a large number of variable act together is not even theoretically analyzed, and there is no study on intrinsic principle. In this paper, a study was carried out to increase the stability of the force chain to increase the stiffness due to the jamming transition phenomenon. Particle size variables, backbone mechanisms were used to analyze the stability of the force chains. We choose a jamming mechanism as a variable stiffness method of a soft robot, and improve the effect of stiffness based on theoretical analysis, modeling FEM simulation, prototyping and experiment.

Carbon Nanotube의 첨가에 의한 PZT/PVDF 압전소자의 상전이와 출력 효율 개선 (Phase Transition and Improvement of Output Efficiency of the PZT/PVDF Piezoelectric Device by Adding Carbon Nanotubes)

  • 임영택;이선우
    • 한국전기전자재료학회논문지
    • /
    • 제31권2호
    • /
    • pp.94-97
    • /
    • 2018
  • Lead zirconate titanate/poly-vinylidene fluoride (PZT/PVDF) piezoelectric devices were fabricated by incorporating carbon nanotubes (CNTs), for use as flexible energy harvesting devices. CNTs were added to maximize the formation of the ${\beta}$ phase of PVDF to enhance the piezoelectricity of the devices. The phase transition of PVDF induced by the addition of CNTs was confirmed by analyzing the X-ray diffraction patterns, scanning electron microscopy images, and atomic force microscopy images. The enhanced output efficiency of the PZT/PVDF piezoelectric devices was confirmed by measuring the output current and voltage of the fabricated devices. The maximum output current and voltage of the PZT/PVDF piezoelectric devices was 200 nA and 350 mV, respectively, upon incorporation of 0.06 wt% CNTs.

AE를 이용한 AFM 연성 영역 가공 특성 연구 (Characteristic of Ductile Regime AFM Machining Using Acoustic Emission)

  • 안병운;이광호;이성환
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, atomic force microscope(AFM) with suitable tips is being used for nano fabrication/nanometric machining purposes. In this paper, acoustic emission(AE) was introduced to monitor the nanometric machining of brittle materials(silicon) using AFM. In the experiments, AE responses were sampled, as the tip load was linearly increased(ramped load), to investigate the machining characteristics during a continuous movement. By analyzing the experimental results, it can be concluded that measured AE energy is sensitive to changes in the mechanism of material removal including the ductile-brittle transition during the nanometric machining. The critical depth of cut value for the transition is evaluated and discussed.

완화곡선을 갖는 수평 곡선보의 자유진동 (Free Vibrations of Horizontally Curved Beams with Transient Curve)

  • 이병구;진태기;이태은
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.82-88
    • /
    • 2002
  • This paper deals with the free vibrations of horizontally curved beams with transition curve. Based on the dynamic equilibrium equations of a curved beam element subjected to the stress resultants and inertia forces, the governing differential equations are derived for the out-of-plane vibration of curved beam wish variable curvature. This equations are applied to the beam having transition curve in which the third parabolic curve is chosen in this study. The differential equations are solved by the numerical procedures for calculating the natural frequencies. As the numerical results, the various parametric studies effecting on natural frequencies are investigated and its results are presented in tables and figures. Also the laboratory scaled experiments were conducted for verifying the theories developed herein.

A rough flat-joint model for interfacial transition zone in concrete

  • Fengchen Li;J.L. Feng
    • Computers and Concrete
    • /
    • 제34권2호
    • /
    • pp.231-245
    • /
    • 2024
  • A 3D discrete element model integrating the rough surface contact concept with the flat-joint model is suggested to examine the mechanical characteristics of the interfacial transition zone (ITZ) in concrete. The essential components of our DEM procedure include the calculation of the actual contact area in an element contact-pair related to the bonded factor using a Gaussian probability distribution of asperity height, as well as the determination of the contact probability-relative displacement form using the least square method for further computing the force-displacement of ITZs. The present formulations are implemented in MUSEN, an open source development environment for discrete element analysis that is optimized for high performance computation. The model's meso-parameters are calibrated by using uniaxial compression and splitting tensile simulations, as well as laboratory tests of concrete from the literature. The present model's DEM predictions accord well with laboratory experimental tests of pull-out concrete specimens published in the literature.

Evaluation of APR1400 Steam Generator Tube-to-Tubesheet Contact Area Residual Stresses

  • KIPTISIA, Wycliffe Kiprotich;NAMGUNG, Ihn
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.18-27
    • /
    • 2019
  • The Advanced Power Reactor 1400 (APR1400) Steam Generator (SG) uses alloy 690 as a tube material and SA-508 Grade 3 Class 1 as a tubesheet material to form tube-to-tubesheet joint through hydraulic expansion process. In this paper, the residual stresses in the SG tube-to-tubesheet contact area was investigated by applying Model-Based System Engineering (MBSE) methodology and the V-model. The use of MBSE transform system description into diagrams which clearly describe the logical interaction between functions hence minimizes the risk of ambiguity. A theoretical and Finite Element Methodology (FEM) was used to assess and compare the residual stresses in the tube-to-tubesheet contact area. Additionally, the axial strength of the tube to tubesheet joint based on the pull-out force against the contact joint force was evaluated and recommended optimum autofrettage pressure to minimize residual stresses in the transition zone given. A single U-tube hole and tubesheet with ligament thickness was taken as a single cylinder and plane strain condition was assumed. An iterative method was used in FEM simulation to find the limit autofrettage pressure at which pull-out force and contact force are of the same magnitude. The joint contact force was estimated to be 20 times more than the pull-out force and the limit autofrettage pressure was estimated to be 141.85MPa.

CMP 연마입자의 마찰력과 연마율에 관한 영향 (Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP))

  • 김구연;김형재;박범영;이현섭;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

인터모달 자동화물운송시스템을 위한 회전정렬형 대차의 개념설계 및 해석 (Conceptual Design and Analysis of Rotation-Aligning Bogie Mechanism for Inter-modal Automated Freight Transport Systems)

  • 안창선
    • 한국산학기술학회논문지
    • /
    • 제20권4호
    • /
    • pp.632-638
    • /
    • 2019
  • 본 논문은 도로와 철도를 포함하는 인터모달 자동화물운송시스템을 위한 화물열차 대차 구조를 소개하고, 레일에 대한 반력 해석 결과를 논한다. 새로운 운송시스템은 시간과 비용을 획기적으로 절약할 수 있는 회전 정렬형 철도차량 방식을 기반으로 한다. 개념 설계 단계에서 고려해야하는 중요한 문제 중의 하나는 궤도 및 대차의 특징적인 형태에서 발생하는 레일에 가해지는 횡력이다. 특히 주행 궤도에서 플랫폼 구간으로 바뀌는 천이구간에서 큰 횡력이 발생하는데, 해석 결과를 바탕으로 향후 시스템 설계 시 참조할 수 있는 설계 가이드를 제공하고자 한다. 해석 결과, 제안하는 구조가 궤도 안정성 및 주행 안정성 면에서 문제가 없어 실제 시스템에 적용할 수 있는 구조이며, 주행 구간에서 플랫폼 구간으로 궤도가 변하는 곳에서 궤도의 선형을 설계할 시, 곡률 반경과 플랫폼 궤도 사이 거리가 중요한 변수임을 밝혀졌다.