• Title/Summary/Keyword: Transition Finite Element

Search Result 156, Processing Time 0.025 seconds

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

Noise Control of Plate Structures with Optimal Design of Multiple Piezoelectric Actuators (복수 압전 가진기의 최적 설계를 통한 판구조물의 소음제어)

  • 김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.263-270
    • /
    • 1996
  • Noise control of a plate structure with multiple disk shaped piezoelectric actuators is studied. The plate is excited by an acoustic pressure field produced by a noise source located below the plate. Finite element modeling is used for the plate structure that supports a combination of three dimensional solid, flat shell and transition elements. The objective function, in the optimization procedure, is to minimize the sound energy radiated onto a hemispherical surface of given radius and the design parameters are the locations and sizes of the piezoelectric actuators as well as the amplitudes of the voltages applied to them. Automatic mesh generation is addressed as part of the modeling procedure. Numerical results for both resonance and off resonance frequencies show remarkable noise reduction and the optimal locations of the actuators are found to be close to the edges of the plate structure. The optimized result is robust such that when the acoustic pressure pattern is changed, reduction of radiated sound is still maintained. The robustness of an optimally designed structure is also tested by changing the frequency of the noise source using only the actuator voltages as design parameters.

  • PDF

Plasticity and Fracture Behaviors of Marine Structural Steel, Part IV: Experimental Study on Mechanical Properties at Elevated Temperatures (조선 해양 구조물용 강재의 소성 및 파단 특성 IV: 고온 기계적 물성치에 관한 실험적 연구)

  • Choung, Joon-Mo;Im, Sung-Woo;Park, Ro-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.66-72
    • /
    • 2011
  • This is the fourth of a series of companion papers dealing with the mechanical property reductions of various marine structural steels. Even though a reduction of the elastic modulus according to temperature increases has not been obtained from experiments, high temperature experiments from room temperature to $900^{\circ}C$ revealed that initial the yield strength and tensile strength are both seriously degraded. The mechanical properties obtained from high temperature experiments are compared with those from EC3 (Eurocode 3). It is found that the high temperature test results generally comply with the prediction values by EC3. Based on the prediction of EC3, time domain nonlinear finite element analyses were carried out for a blast wall installed on a real FPSO. After applying the reduced mechanical properties, corresponding to $600^{\circ}C$ to the FE model of the blast wall, more than three times the deflections were observed and it was observed that most structural parts experience plastic deformations exceeding the reduced yield strength at the high temperature. It is noted that a protection facility such as PFP (passive fire protection) should be required for structures likely to be directly exposed to fire and explosion accident.

Evaluation of Behaviors in Abutment Transition Zone Depending on Constrution Orders and Number of Piles (뒤채움 시공순서 및 말뚝 수에 따른 교대 접속부 거동평가)

  • Kim, Ung-Jin;Jeong, Rag-Gyo;Kim, Dae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The RAR (Reinforced Abutment for Railways) is an economical abutment to reduce the settlement of a transitional zone and horizontal displacement of an abutment by constructing backfill before the abutment. In this paper, the performance of the RAR depending on the pile installation was evaluated using 2D (Dimensional) finite element analysis and compared with the existing abutment (with 5 rows pile). Numerical analysis showed that increasing pile installation is more effective in reducing horizontal displacement and earth pressure than settlement of the transitional zone. The horizontal displacement and earth pressure of the RAR was approximately 26~37% and 59~83% compared to the existing abutment by changing the pile installation. More pile installation led to a greater reduction of the horizontal displacement and earth pressure of the RAR. In addition, the horizontal earth pressure of RAR is influenced considerably by the reinforcement, pile, foundation, and stiffness of the ground.

Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale

  • Du, Chengbin;Jiang, Shouyan;Qin, Wu;Xu, Hairong;Lei, Dong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.135-147
    • /
    • 2012
  • At mesoscale, concrete is considered as a three-phase composite material consisting of the aggregate particles, the cement matrix and the interfacial transition zone (ITZ). The reconstruction of the internal structures for concrete composites requires the identification of the boundary of the aggregate particles and the cement matrix using digital imaging technology followed by post-processing through MATLAB. A parameter study covers the subsection transformation, median filter, and open and close operation of the digital image sample to obtain the optimal parameter for performing the image processing technology. The subsection transformation is performed using a grey histogram of the digital image samples with a threshold value of [120, 210] followed by median filtering with a $16{\times}16$ square module based on the dimensions of the aggregate particles and their internal impurity. We then select a "disk" tectonic structure with a specific radius, which performs open and close operations on the images. The edges of the aggregate particles (similar to the original digital images) are obtained using the canny edge detection method. The finite element model at mesoscale can be established using the proposed image processing technology. The location of the crack determined through the numerical method is identical to the experimental result, and the load-displacement curve determined through the numerical method is in close agreement with the experimental results. Comparisons of the numerical and experimental results show that the proposed image processing technology is highly effective in reconstructing the internal structures of concrete composites.

Numerical Modeling of the Transformation Temperature Effect on the Relaxation of Welding Residual Stress (용접 잔류응력 완화에 미치는 변태 온도의 영향에 관한 수치적 모델링)

  • Jang, Gyoung-Bok;Kang, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2552-2559
    • /
    • 2000
  • Most of ferrous b.c.c weld materials have martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is necessary to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions, i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. In this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis. In addition to, since the transformation temperature changes by the kind and control of alloying elements, the steel with many kinds of transformation temperature were selected and the effect of transformation on stress releasement was investigated by the numerical procedures considering phase transformation.

Analysis of the Variation of Earth Pressures and Pore Pressures on the Interfaces of Taechong Composite Dam. (대청복합댐 접합면에 대한 토압 및 간극수압의 변동분석)

  • 임희대;김상규
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.33-44
    • /
    • 1988
  • The Taechong Dam completed in 1980 is a composite dam at which a junction was formed partly by butting the core against the end face of the concrete gravity section and partly by the core overlapping the upstream face of the concrete. In order to evaluate the performance of the junction, the interfaces between the concrete dam and core of the embankment dam were well instrumented with total pressure cells and piezometers. A nonlinear incremental finite element analysis simulating its construction behaviour was carried out under plane strain conditions. Material parameters for the core are determined from triaxial tests on the specimens, sampled in the quarry site and compacted to the field dry density at the field moisture content. Material parameters for the filter, transition materials and the rockfill are estimated from literature. When compared with the earth pressures measured at the interfaces, the analytical results show good agreement in the core, however, there are some discrepancy in the shell. A nonlinear model for pore pressure response is used successfully to predict the pore pressures at the interface in the core.

  • PDF

Evaluation of Probabilistic Fracture Mechanics for Reactor Pressure Vessel under SBLOCA (소규모 냉각재 상실사고하의 원자로 압력용기에 대한 확률론적 파괴역학 평가)

  • Kim, Jong Wook;Lee, Gyu Mahn;Kim, Tae Wan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • In order to predict a remaining life of a plant, it is necessary to select the components that are critical to the plant life. The remaining life of those components shall be evaluated by considering the aging effect of materials used as well as numerous factors. However, when evaluating reliability of nuclear structural components, some problems are quite formidable because of lack of information such as operating history, material property change and uncertainty in damage models. Accordingly, if structural integrity and safety are evaluated by the deterministic fracture mechanics approach, it is expected that the results obtained are too conservative to perform a rational evaluation of plant life. The probabilistic fracture mechanics approaches are regarded as appropriate methods to rationally evaluate the plant life since they can consider various uncertainties such as sizes and shapes of cracks and degradation of material strength due to the aging effects. The objective of this study is to evaluate the structural integrity for a reactor pressure vessel under the small break loss of coolant accident by applying the deterministic and probabilistic fracture mechanics. The deterministic fracture mechanics analysis was performed using the three dimensional finite element model. The probabilistic integrity analysis was based on the Monte Carlo simulation. The selected random variables are the neutron fluence on the vessel inside surface, the content of copper, nickel, and phosphorus in the reactor pressure vessel material, and initial RTNDT.

  • PDF

Analysis of the Polymer Properties and Sound Characteristics of Interlayer Films for Laminated Glass (접합유리용 고분자 필름의 물성 및 음향학적 특성 분석)

  • Ko, Sangwon;Hong, Jiyoung;Sunwoo, Yerim;Kim, Young Jun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • To improve the sound insulation performance of laminated glass in high speed trains, it is beneficial to study the relationship between the characteristics of interlayer films and the acoustical performance. In addition to those of conventional PVB (polyvinyl butyral), the dynamic mechanical properties of PVB derivatives and PC (polycarbonate), which are candidates for interlayer films, were analyzed. We assumed that PVB-HEMU, which has a glass transition temperature ($T_g$) around room temperature and a large tan ${\delta}$ (loss tangent) value, can be made to damp efficiently. The damping capability was tested utilizing sound transmission loss measurement and simulation under the identical structure of laminated glass in high speed trains. We also built a database for analysis of relations between interlayer film characteristics and acoustical performance; this was followed by the determination of sound transmission loss using the intensity technique and FEA.

A study on Response Characteristics for the Reinforced Abutment for Railroads by Numerical Analyses (수치해석을 통한 철도보강교대의 응답 특성 연구)

  • Kim, Dae-Sang;Jeong, Rag-Gyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7949-7956
    • /
    • 2015
  • This paper introduced the RAR(Reinforced Abutment for Railroads) to reduce settlement of transitional zone and horizontal displacement of abutment by constructing backfill before abutment. We expect that it has more economical and better performance which was validated by numerical analyses. First, transitional zone settlements and horizontal displacements of existing abutment were evaluated for various heights and ground conditions by using finite element analysis program. Then, numerical analyses of it under the same conditions were performed and its results were compared with existing abutment's ones. From the numerical analysis, we found that the responses(settlement and horizontal displacement) of transitional zone of the RAR is about 20% and 34% of one of existing abutment due to the effect of backfill stabilizing. We expected that the RAR having small foundations could be economic way to construct abutment with the control of responses such as, settlement, horizontal displacement, and earth pressure.