• Title/Summary/Keyword: Transient thermal impedance measurement

Search Result 2, Processing Time 0.017 seconds

Experimental Investigations for Thermal Mutual Evaluation in Multi-Chip Modules

  • Ayadi, Moez;Bouguezzi, Sihem;Ghariani, Moez;Neji, Rafik
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1345-1356
    • /
    • 2014
  • The thermal behavior of power modules is an important criterion for the design of cooling systems and optimum thermal structure of these modules. An important consideration for high power and high frequency design is the spacing between semiconductor devices, substrate structure and influence of the boundary condition in the case. This study focuses on the thermal behavior of hybrid power modules to establish a simplified method that allows temperature estimation in different module components without decapsulation. This study resulted in a correction of the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on mutual thermal coupling between different chips of the hybrid structure. A new experimental technique for thermal mutual evaluation is presented. Notably, the classic analysis of thermal phenomena in these structures, which was independent of dissipated power magnitude and boundary conditions in the case, is incorrect.

IDENTIFICATION OF TWO-DIMENSIONAL VOID PROFILE IN A LARGE SLAB GEOMETRY USING AN IMPEDANCE MEASUREMENT METHOD

  • Euh, D.J.;Kim, S.;Kim, B.D.;Park, W.M.;Kim, K.D.;Bae, J.H.;Lee, J.Y.;Yun, B.J.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.613-624
    • /
    • 2013
  • Multi-dimensional two-phase phenomena occur in many industrial applications, particularly in a nuclear reactor during steady operation or a transient period. Appropriate modeling of complicated behavior induced by a multi-dimensional flow is important for the reactor safety analysis results. SPACE, a safety analysis code for thermal hydraulic systems which is currently being developed, was designed to have the capacity of multi-dimensional two-phase thermo-dynamic phenomena induced in the various phases of a nuclear system. To validate the performance of SPACE, a two-dimensional two-phase flow test was performed with slab geometry of the test section having a scale of $1.43m{\times}1.43m{\times}0.11m$. The test section has three inlet and three outlet nozzles on the bottom and top gap walls, respectively, and two outlet nozzles installed directly on the surface of the slab. Various kinds of two-dimensional air/water flows were simulated by selecting combinations of the inlet and outlet nozzles. In this study, two-dimensional two-phase void fraction profiles were quantified by measuring the local gap impedance at 225 points. The flow conditions cover various flow regimes by controlling the flow rate at the inlet boundary. For each selected inlet and outlet nozzle combination, the water flow rate ranged from 2 to 20 kg/s, and the air flow rate ranged from 2.0 to 20 g/s, which corresponds to 0.4 to 4 m/s and 0.2 to 2.3 m/s of the superficial liquid and gas velocities based on the inlet port area, respectively.