• 제목/요약/키워드: Transient thermal behavior

검색결과 159건 처리시간 0.023초

Numerical Simulations of Subcritical Reactor Kinetics in Thermal Hydraulic Transient Phases

  • J. Yoo;Park, W. S.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.149-154
    • /
    • 1998
  • A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute(KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons from spallation reactions are essentially required for operating the reactor in its steady state. furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance of the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases.

  • PDF

온도의존성 열특성 계수를 고려한 화재에 노출된 철근콘크리트 골조의 해석적 연구 (Temperature-Dependency Thermal Properties and Transient Thermal Analysis of Structural Frames Exposed to Fire)

  • 한병찬;권영진;김재환;신영수;최은규
    • 콘크리트학회논문집
    • /
    • 제19권3호
    • /
    • pp.283-292
    • /
    • 2007
  • 본 연구는 화재에 노출된 철근콘크리트 구조물의 열적 특성 및 구조 거동을 예측할 수 있는 비정상 온도 분포 해석 및 비선형 유한요소해석 기법 개발에 관한 것으로써, 범용 유한요소해석 프로그램인 DIANA를 이용하여 화재에 의한 고온을 받는 철근콘크리트 구조에 대한 수치해석을 수행하고 그 결과를 비교분석하였다. 고온을 받는 철근콘크리트 골조에 대한 수치해석은 시간의존 비정상 온도 분포 해석과 비선형 유한요소해석의 2단계로 진행된다. 비정상 온도 분포 해석에서는 열전도율, 열용량, 열팽창계수에 대한 시간의존 변수를 온도 함수로 표현하여 이를 고려하였으며, 비선형 유한요소해석에 있어서는 콘크리트의 비선형성과 균열을 고려하기 위하여 파괴 역학적 관점을 도입하였다. 또한 철근콘크리트 단순보에 대한 내화 실험을 실시하여, 재료의 열적 특성 및 해석 기법에 대한 검증을 실시하였다. 이러한 해석 기법을 철근콘크리트 골조로 확장하여 열에 의한 콘크리트 및 철근의 역학적 물성 변화 요인을 고려한 해석을 통하여 각각의 변수에 대한 비교 분석을 수행하였다. 본 연구에서의 고온 환경하의 철근콘크리트 구조물에 대한 비선형 유한요소해석기법은 온도에 따른 재료의 열적 특성 및 역학적 성능 및 화재-온도 곡선을 자유롭게 입력하여 고려할 수 있으며, 추후 관련 해석에 용이하게 사용될 수 있을 것으로 판단되었다.

소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션 (Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System)

  • 조우진;이관수;김인규
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

통기식 디스크 브레이크의 방열 성능에 관한 수치적 연구 (A Numerical Study of Thermal Performance in Ventilated Disk Brake)

  • 김진택;백병준
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.358-364
    • /
    • 2001
  • Disk brake system transforms a large amount of kinetic energy to thermal energy in a short time. As the size and speed of automotive increases in recent years, the disk brakes absorbs more thermal energy. And this thermal energy can cause an unacceptable braking performance due to the high transient temperature, that is attained at the friction surface of brake disk and pad. Although these high temperatures are one of the biggest problems. In this study, the overall thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of several parameters such as the repeated braking, inlet air velocity and thermal conductivity on the temperature distribution were investigated.

방열핀이 난방용 패널의 열적거동 및 성능에 미치는 영향 (The Effects of Heat Diffusion Fin on the Thermal Behavior and Performance of Radiant Heatomg Panel)

  • 이태원
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2486-2493
    • /
    • 1994
  • Transient heat transfer characteristics in th radiant heating panel with heat diffusion fin were predicted by numerical analysis. Thermal behaviors of panel, such as temperature distributions in panel and convective and radiative heat fluxes in panel surface with advance of time, were obtained for several important parameters. The performance and thermal comfort of heating panel were studied and compared for various design conditions, such as pipe pitch, area ratio and thermal conductivity of optimal design of the new heating panels with heat diffusion fin. It was concluded that the efficient area ratio of heat diffusion fin is about 0.5, and the greater the thermal conductivity of fin is, the better the performance of panel is.

초단파 레이저 조사시 티슈 열완화 시간 분석 (Analysis of Thermal Relaxation Time of Tissues Subject to Pulsed Laser Irradiation)

  • 김경한;이제훈;서정
    • 한국레이저가공학회지
    • /
    • 제12권2호
    • /
    • pp.17-25
    • /
    • 2009
  • Two methodologies for predicting thermal relaxation time of tissue subjected to pulsed laser irradiation is introduced by the calculation the optical penetration depth and by the investigation of the temperature diffusion behavior. First approach is that both x-axial and y-axial thermal relaxation times are predicted and they are superposed to achieve the thermal relaxation time (${\tau}_1$) for two-dimensional square tissue model. Another approach to achieve thermal relaxation time (${\tau}_2$) is measuring the time required for local temperature drop until $e^{-1}$ of the maximum laser induced heating.

  • PDF

Thermo-Mechanical Analysis for Metallic Fuel Pin under Transient Condition

  • Lee, Dong-Uk;Lee, Byoung-Oon;Kim, Yeong-Il;Hahn, Dohee
    • 에너지공학
    • /
    • 제13권3호
    • /
    • pp.181-190
    • /
    • 2004
  • Computational models for analyzing the in-reactor behavior of metallic fuel pins under transient conditions in liquid-metal reactors are developed and implemented in the TRAMAC (TRAnsient thermo-Mechanical Analysis Code) for a metal fuel rod under transient operation conditions. Not only the basic models for a fuel rod performance but also some sub-models used for transient condition are installed in TRAMAC. Among the models, a fission gas release model, which takes the multi-bubble size distribution into account to characterize the lenticular bubble shape and the saturation condition on the grain boundary and the cladding deformation model have been developed based mainly on the existing models in the MAC-SIS code. Finally, cladding strains are calculated from the amount of thermal creep, irradiation creep, and irradiation swelling. The cladding strain model in TRAMAC predicts well the absolute magnitudes and gen-eral trends of their predictions compared with those of experimental data. TRAMAC results for the FH-1,2,6 pins are more conservative than experimental data and relatively reasonable than those of FPIN2 code. From the calculation results of TRAMAC, it is apparent that the code is capable of predicting fission gas release, and cladding deformation for LMR metal fuel finder transient operation conditions. The results show that in general, the predictions of TRAMAC agree well with the available irradiation data.

Modeling of combined thermal and mechanical action in roller compacted concrete dam by three-dimensional finite element method

  • Abdulrazeg, A.A.;Noorzaei, J.;Mohammed, T.A.;Jaafar, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.1-25
    • /
    • 2013
  • A combined thermal and mechanical action in roller compacted concrete (RCC) dam analysis is carried out using a three-dimensional finite element method. In this work a numerical procedure for the simulation of construction process and service life of RCC dams is presented. It takes into account the more relevant features of the behavior of concrete such as hydration, ageing and creep. A viscoelastic model, including ageing effects and thermal dependent properties is adopted for the concrete. The different isothermal temperature influence on creep and elastic modulus is taken into account by the maturity concept, and the influence of the change of temperature on creep is considered by introducing a transient thermal creep term. Crack index is used to assess the risk of occurrence of crack either at short or long term. This study demonstrates that, the increase of the elastic modulus has been accelerated due to the high temperature of hydration at the initial stage, and consequently stresses are increased.

열분해 용융소각로 내 용융로에서의 온도변화에 대한 과정론적 모델링 (A Transient Modeling of Temperature Variation in a Melting Furnace of a Pyrolysis Melting Incinerator)

  • 김봉근;양원;류태우
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.167-171
    • /
    • 2006
  • The previous models for thermal behavior in the melting furnace were deterministic, composed of such a form that if the initial input conditions are determined, the results would have been come out by using the basic heat equilibrium equations. But making the experiment by trusting the analysis results, the melted slag is fortuitously set often, because temperature variation of the melted slag in the reaction process is not point function but path function. So in this study, a transient model was developed and verified by comparing with the experimental results.

  • PDF