• Title/Summary/Keyword: Transient seepage analysis

Search Result 25, Processing Time 0.018 seconds

Stability of unsaturated infinite slope under rainfall-induced infiltration (강우침투시 불포화 무한사면의 안정성 평가)

  • Song, Young-Suk;Hwang, Woong-Ki;Lee, Nam-Woo;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.71-78
    • /
    • 2010
  • The stability analysis of unsaturated infinite slope under rainfall-induced infiltration condition was performed using the generalized effective stress that unifies both saturated and unsaturated condition recently proposed by Lu and Likos(2004, 2006). The Soil-Water Characteristic Curve (SWCC) of the sand with the relative density of 75% was first measured for both drying and wetting processes. The Hydraulic Conductivity Function (HCF) and Suction Stress Characteristic Curve (SSCC) were subsequently estimated. Also, under the rainfall-induced infiltration condition transient seepage analysis of unsaturated infinite slope was performed using the finite element program, SEEP/W. Based on these results, the stability of unsaturated infinite slope under rainfall-induced infiltration condition was examined considering the suction stress. According to the results, the negative pore water pressure and water content within the soil changed with time due to the infiltration. Also, the variation of those caused the variation of suction stress and then the factor of safety of slope changed consequently during the rainfall period.

  • PDF

Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis (2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Geotextile has been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers. They are hydraulically filled with dredged materials and have been applied in coastal protection and scour protection, dewatering method of slurry, temporary working platform for bridge construction, temporary embankment for spill way dam construction. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. The paper presents the stability behavior of geotextile tube composite structure by 2-D limit equilibrium and slope stability analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure to the lateral earth pressure and also transient seepage and stability analysis were conducted to determine the pore pressure distribution by tide variation and slope stability. Based on the results of this paper, the three types of geotextile tube composite structure is stable and also slope stability of overall geotextile tube composite structures is stable with the variation of tidal conditions.

  • PDF

Performance of a Chimney Drain in Reinforced Earth Wall for Reduction of Pore Water Pressure During Rainfall - a Numerical Investigation (보강토 옹벽에 적용되는 연직 배수시스템의 강우시 수압 저감 효과 - 수치해석 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Jung, Hyuk-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.99-106
    • /
    • 2008
  • This study is concernsed with the effect of a chimney drainage system installed at the back of reinforced soil block on preventing the pore water pressure development. A series of finite-element analyses based on transient seepage analysis were performed for a number of cases with different patterns of the chimney drainage system. The results were thoroughly analyzed to get insight into the mechanism of pore water pressure reduction effect of the chimney drainage system. It is shown that a vertical drainage system installed at the back of reinforced zone can be an effective means of maintaining the wall stability during rainfall by preventing pore pressure increase in the reinforced as well as the backfill zones. Also shown is that the optimum height of the chimney drain is 50% of the wall height. Practical implications of the findings were discussed.

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.55-64
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration caused by prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve (SWCC) of granite and gneiss weathered soils is investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

Seepage in to a Dike due to Tidal Fluctuation (조위변동(潮位變動)으로 인한 호안제내(護岸堤內)의 침투(浸透))

  • Kim, Sang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.71-84
    • /
    • 1985
  • Using a saturated-unsaturated transient flow equation the change of hydraulic heads within a dike due to tidal fluctuation is investigated in this study. The calculation is done by the use of a software computer program called FLUMP, which is based on a FEM technique and useful to the analyses of unsaturated flow problems. Some of the program has been supplemented in this study for the application to the rise of a tide. It is assumed that a dike is composed of two materials, that the tide rises and falls with a constant amplitude of 10 meters, and that water tables are located at 0m, 5m, and lam from the minimum tidal level. For these conditions the hydraulic heads are calculated for 8 cycles(96 hours) of tidal changes. It is known from the analysis that the hydraulic heads change with tidal level in some extent and that the amplitudes of the head varies depending on the location within the dike: the maximum amplitude shows near the toe of the dike, the amplitude decreases with increasing distance from the upstream face, and beyond a certain location the heads are unaffected by the tidal differences. Assuming that the dike has been completed in a moment the hydraulic heads are nearly stabilized in 96 hours towards some constant values corresponding to a specified water table.

  • PDF