• 제목/요약/키워드: Transient liquid phase bonding

검색결과 59건 처리시간 0.023초

액상확산접합한 Ni기 초내열합금의 등온응고거동에 미치는 모재결정입계의 영향 (The Effect of Base Metal Grain Boundary on Isothermal Solidification Phenomena during TLP Bonding of Ni Base Superalloys)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.325-333
    • /
    • 2001
  • The effect of base metal grain size on isothermal solidification behavior of Ni-base superalloy, CMSX-2 during transient liquid phase (TLP) bonding was investigated employing MBF-80 insert metal. TLP-bonding of single crystal. coarse-grained and fine-grained CMSX-2 was carried out at 1373∼1548k for various holding time in vacuum. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process for single crystal, coarse-grained and fine-grained base metals. The completion time for isothermal solidification decreased in the order ; single crystal, coarse-grained and fine-grained base metals. The difference of isothermal solidification rates produced when bonding the different base metals could be explained quantitatively by the effect of base metal grain boundaries on the apparent average diffusion coefficient of boron in CMSX-2.

  • PDF

일방향응고 니켈기 초내열합금 GTD111에서 천이 액상확산 접합용 삽입금속의 개발에 관한 연구 (Development of Insert Metals for the Transient Liquid Phase Bonding in the Directional Solidified Ni Base Super Alloy GTD 111)

  • 이봉근;오인석;김길무;강정윤
    • 대한금속재료학회지
    • /
    • 제47권4호
    • /
    • pp.242-247
    • /
    • 2009
  • On the Transient Liquid Phase Bonding (TLPB) phenomenon with the MBF-50 insert metal at narrow gap (under 100), it takes long time for the bonding and the homogenizing. Typically, isothermal solidification is controlled by the diffusion of depressed element of B and Si. However, the amount of B and Si in the MBF-50 filler metal is large. This is reason of the long bonding time. Also, the MBF-50 filler metal did not contained Al and Ti which are ${\gamma}^{\prime}$ phases former. This is reason of the long homogenizing time. From the bonding phenomenon with the MBF-50 insert metal, we search main factors on the bonding mechanism and select several insert-metals for using the wide-gap TLPB. New insert-metals contained Al and Ti which are ${\gamma}^{\prime}$ phases former and decrease the B then the MBF-50. When the new insert-metal was used on the TLPB, the bonding time was decreased about 1/10 times and homogenizing heat treatment was no needed. In spite of the without homogenizing, the volume fraction of ${\gamma}^{\prime}$ phases in the boned interlayer was equal to homogenizing heat treated specimen which was TLPB with the MBF-50. Finally, the new insert metal named WG1 for the wide-gap TLPB is more efficient then the MBF-50 filler metal without decreasing the bonding characteristic.

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(II) -접합공정에서 모재조직의 변화- (Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(II) -Microstructural Change of Base Metal during Bonding Process -)

  • 강정윤;황형철;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.89-96
    • /
    • 2003
  • The change of microstructures in the base metal during transient liquid phase bonding process of directionally Ni base superalloy, GTD-111 was investigated. Bonds were fabricated using a series of holding times(0-7.2ks) at three different temperatures(1403, 1418 and 1453K) under a vacuum of 13.3mPa. In raw material, ${\gamma}$- ${\gamma}$' eutectic phases, platelet η phases, MC carbide and PFZ were seen in interdendritic regions or near grain boundary and size of primary ${\gamma}$' precipitates near interdendritic regions were bigger than core region. The primary ${\gamma}$' precipitates in dendrite core were dissolved early in bonding process, but ${\gamma}$' precipitates near interdendritic regions were dissolved partially and shape changed. The dissolution rate increased with increasing temperature. Phases in interdendritic regions or near pain boundary continually changed with time at the bonding temperature. In the bonding temperature of 1403K, eutectic phases had not significantly changed, but η phases had transformed from platelet shape to needle morphology and PFZ region had widened with time. The interdendritic region and near pain boundary were liquated partially at 1423k and fully at 1453k by reaction of η phases and PFZ. In the bonding temperature of 1453K, interdendritic region and near pain boundary were liquated and then new phases which mixed with η phases, PFZ and MC carbide crystallized during cooling. Crystallized η phases transformed from rod shape to platelet shape with increasing holding time.

단결정 Ni기 초내열합금 액상확산접합부 단결정화에 미치는 접합방위차의 영향 (Effect of Bonding Misfit on Single Crystallization of Transient Liquid Phase Bonded Joints of Ni Base Single Crystal Superalloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.93-98
    • /
    • 2002
  • The effect of bonding misfit on single crystallization of transient liquid phase (TLP) bonded joints of single crystal superalloy CMSX-2 was investigated using MBF-80 insert metal. The bonding misfit was defined by (100) twist angle (rotating angle) at bonded interface. TLP bonding of specimens was carried out at 1523K for 1.8ks in vacuum. The post-bond heat treatment consisted of the solution and sequential two step aging treatment was conducted in the Ar atmosphere. The crystallographic orientation analysis across the TLP bonded joints was conducted three dimensionally using the electron back scattering pattern (EBSP) method. EBSP analyses f3r the bonded and post bonded heat treated specimens were conducted. All bonded joints had misorientation centering around the bonded interface for as-bonded and post-bond heat treated specimens with rotating angle. The average misorientation angle between both solid phases in bonded interlayer was almost identical to the rotating angle at bonded interface. HRTEM observation revealed that the atom arrangement of both solid phases in bonded interlayer was quite different across the bonded interface. It followed that grain boundary was formed in bonded interface. It was confirmed that epitaxial growth of the solid phase occurred from the base metal substrates during TLP bonding and single crystallization could not be achieved in joints with rotating angle.

Fe기 MA956 산화물분산강화합금의 천이액상확산접합에 관한 연구 (Transient-Liquid-Phase Bonding of Fe-Base MA956 ODS Alloy)

  • 강지훈
    • 한국분말재료학회지
    • /
    • 제2권1호
    • /
    • pp.53-62
    • /
    • 1995
  • TLP(Transient-Liquid-Phase) bonding of Fe-base MA956 ODS alloy was performed. As insert metal a commercially available Ni-base alloy(MBF50) and an MA956 alloy with additive elements of 7wt% Si and 1wt% B were used. To confirm the idea that a concurrent use of MA956 powder with Insert metals can enhance the homogenization of constituent elements and thereby reduce the thickness of joint interface, MA956 powder was also inserted In a form of sheet. SEM observation and EDS analysis revealed that Cr-rich phase was formed in the bonded interface in initial stage of isothermal solidification during the bonding process, irrespective of kind of insert metals. Measurement of hardeness in the region of bonded interface and EDS analysis showed that a complete homogenization of composition could not be obtained especially in case of MBF50. Joints using either BSi insert metals only or BSi insert together with MA956 powder interlayer showed, however, a remarkable improvement in a compositional homogenization, even though a rapid grain growth in the bonded interface could not be hindered.

  • PDF

Ni기 초내열합금의 액상확산접합부 생성상의 금속조직학적 검토 (Metallurgical Study of Microconstituents in Transient Liquid Phase Bended Joints of Ni Base Superalloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.75-81
    • /
    • 2001
  • The metallurgical study of microconstituents in transient liquid phase bonded joints of Ni-base single crystal superalloys, CMSX-2 and CMSX-4 was investigated employing MBF-80 insert metal. TLP bonding of specimens was carried out at 1,373~1,523K for 0~19.6ks in vacuum. Three types of microconstituents ; needle-like constituent, dot-like constituent and abnormal shape constituent were formed in the bonded interlayer during TLP bonding operation. All these microconstituents were identified as boride. Microconstituents contain a large percentage of Cr in the early stage of bonding. As increasing the holding time, the amount of Cr was decreased and the amount of W, Co and Re were increased. From the analysis results of electron diffraction pattern by TEM, composition of elements in microconstituents were into MBlongrightarrowM$_{5}$B$_3$longrightarrowM$_2$B type with the increased in holding time. It can be explained by the fact that the relative amount of boron in microconstituents was decreased when the holding time was increased.d.

  • PDF

니켈기 초내열 합금의 천이액상확산접합 특성에 미치는 접합 온도 및 가열 속도의 영향 (Effect of Bonding Temperature and Heating Rate on Transient Liquid Phase Diffusion Bonding of Ni-Base Superalloy)

  • 최우혁;김성욱;김종현;김길영;이창희
    • Journal of Welding and Joining
    • /
    • 제23권2호
    • /
    • pp.52-58
    • /
    • 2005
  • This study was carried out to investigate the effect of bonding temperature and heating rate on transient liquid phase diffusion bonding of Ni-base superalloy. The heating rate was varied by $0.1^{\circ}C$/sec, $1^{\circ}C$/sec, $10^{\circ}C$/sec to the bonding temperatures $1100^{\circ}C,\;1150^{\circ}C,\;1200^{\circ}C$ under vacuum. As bonding temperature increased, maximum dissolution width of base metal increased, but a dissolution finishing time decreased. The eutectic width of insert metal in the bonded interlayer decreased linearly in proportion to the square root of holding time during isothermal solidification stage. The bonding temperature was raised, isothermal solidification rate slightly increased. As the heating rate decreased and the bonding temperature increased, the completion time of dissolution after reaching bonding temperature decreased. When the heating rate was very slow, the solidification proceeded before reaching bonding temperature and the time required for the completion of isothermal solidification became reduced.

Ni-foam/Sn-3.0Ag-0.5Cu 복합 솔더 소재를 이용한 EV 파워 모듈 패키지용 천이 액상 확산 접합 연구 (A Study of Transient Liquid Phase Bonding with Ni-foam/Sn-3.0Ag-0.5Cu Composite Solder for EV Power Module Package Application)

  • 서영진;허민행;윤정원
    • 마이크로전자및패키징학회지
    • /
    • 제30권1호
    • /
    • pp.55-62
    • /
    • 2023
  • 본 연구에서는 서로 다른 Pore per inch (PPI, 1 inch 당 pore의 수)를 갖는 Ni-foam 사이에 Sn-3.0Ag-0.5Cu(wt.%, SAC305) 솔더 침지 공정을 수행하여 Ni-foam/SAC305 복합 솔더를 제조한 후, 이를 천이액상 확산 접합(Transient liquid Phase bonding, TLP bonding) 공정에 적용하여 형성된 접합부의 미세구조 분석 및 기계적 특성 평가가 수행되었다. 제조된 Ni-foam/SAC305 복합 솔더 프리폼 (Solder preform)은 Ni-foam 및 SAC305로 구성되었으며, Ni-foam 계면에는 (Ni,Cu)3Sn4 조성의 금속간 화합물이 형성되었다. TLP 접합 공정 수행 시, Ni-foam 계면의 금속간 화합물은 (Ni,Cu)3Sn4+Au로 변환 되었으며, 접합 시간이 증가할수록 Ni-foam과 SAC305가 지속적으로 반응하면서 접합부는 금속간 화합물로 변환되었다. 130 PPI Ni-foam/SAC305 복합 솔더 접합부가 가장 빠른 속도로 금속간 화합물로 변화되는 것을 확인하였다. 기계적 특성에 미치는 Ni-foam의 영향을 확인하기 위해 전단 시험 수행 결과, TLP 접합 초기에 모든 조건의 솔더 접합부는 50 MPa 이상의 우수한 기계적 특성을 나타내었으며, 접합 시간이 증가할수록 전단 강도는 증가하는 경향을 나타내었다.

Microstructural Behavior of Alumina Aggregate Compacts Prepared by Transient Liquid Phase Sintering

  • Lee, Seung-Jae;Kim, Hai-Doo;Lee, Deuk-Yong;Kim, Dae-Joon
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.78-82
    • /
    • 2000
  • Although alumina aggregates have been used as refractory aggregates due to the improved mechanical properties of refractories as a result of the low contraction of alumina aggregates, the aggregates have a difficulty in fabrication due to its low sinterability. Two types of alumina aggregates and a fused alumina aggregate containing transient liquid forming additives are prepared to investigate the sintering characteristics of aggregates. $Al_2O_3$rich composition in the $Al_2O_3$-MgO-$SiO_2$(-$TiO_2$) system is chosen for the transient liquid phase sintering and the final recrystallized bonding phase between grains inside the fused alumina aggregates is found to be a needle-like mullite phase. The flexural strength of alumina bars, reaction-bonded using the paste having a composition of $Al_2O_3$-MgO-$SiO_2$-$TiO_2$, is about 78 MPa, which is one half value of that of pure alumina.

  • PDF