• Title/Summary/Keyword: Transient heat Flow Method

Search Result 65, Processing Time 0.025 seconds

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .

Prediction of Transient Temperature Distributions in the Wall of Curved Piping System Subjected to Internally Thermal Stratification Flow (열성층유동 곡관벽에서의 과도온도분포 예측)

  • Jo, J.C.;Cho, S.J.;Kim, Y.I.;Park, J.Y.;Kim, S.J.;Choi, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.474-481
    • /
    • 2001
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internally thermal stratification flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in the non-orthogonal coordinate systems is presented. The proposed method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm, a higher-order bounded convection scheme, and the modified version of momentum interpolation method. Calculations are performed for the transient evolution of thermal stratification in two curved pipes, where the one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results.

  • PDF

A Numerical Analysis on the Transient Heat Transfer in a Heat Exchanger Pipe Flow

  • Chang, Keun-Sun;Kweon, Young-Chel;Jin, Seong-Ryung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2000
  • Numerical results are presented for the 2-dimensional turbulent transient heat transfer of the shell/tube heat exchanger with a step change of the inlet temperature in the primary side. Heat transfer boundary conditions outside the pipe are given partially by the convection heat transfer conditions and partially by insulated conditions. Calculation results were obtained by solving the unsteady two-dimensional elliptic forms for the Reynolds-averaged governing equations for the mass, momentum and energy. Finite-difference method was used to obtain discretization equations, and the SIMPLER solution algorithm was employed for the calculation procedure. Turbulent model used is the algebraic model proposed by Cebeci-Smith. Results presented include the time variant Nusselt number distribution, average temperature distribution and outlet temperatures for the various inlet temperatures and flow rates.

  • PDF

Numerical Analysis of Conjugate Heat Transfer in a Curved Piping System Subjected to Internal Stratified Laminar Flow (층류 열성층유동 곡관에 대한 복합열전달 수치해석)

  • Jo Jong Chull;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internal laminar thermally-stratified flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in non-orthogonal coordinate systems is presented. Numerical calculations are performed for the transient evolution of thermal stratification in two curved pipes, where one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results for the cases of pipes with thick wall such as safety related-piping systems of nuclear power plant.

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

Detailed Measurement of Flow and Heat Transfer Downstream of Rectanglar Vortex Generators Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 와동발생기 하류의 유동장 및 열전달 측정)

  • Hong, Cheol-Hyun;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1618-1629
    • /
    • 2003
  • The effects of the interaction between flow field and heat transfer caused by the longitudinal vortices are experimentally investigated using a five hole probe and a transient liquid crystal technique. The test facility consists of a wind tunnel with vortex generators protruding from a bottom surface and a mesh heater. In order to control the strength of the longitudinal vortices, the angle of attack of vortex generators used in the present experiment is 20$^{\circ}$, and the spacing between the vortex generators is 25mm. The height and cord length of the vortex generator is 20mm and 50mm, respectively. Three-component mean velocity measurements are made using a f-hole probe system, and the surface temperature distribution is measured by the hue capturing method using a transient liquid crystal technique. The transient liquid crystal technique in measuring heat transfer has become one of the most effective ways in determining the full surface distributions of heat transfer coefficients. The key point of this technique is to convert the inlet flow temperature into an exponential temperature profile using the mesh heater set up in the wind tunnel. The conclusions obtained in the present experiment are as follows: The two maximum heat transfer values exist over the whole domain, and as the longitudinal vortices move to the farther downstream region, these peak values show the decreasing trends. These trends are also observed in the experimental results of other researchers to have used the uniform heat flux method.

Heat Transfer Measurement Using a Transient Liquid Crystal Technique and Numerical Anlysis (과도액정기법을 이용한 열전달 측정 및 수치해석)

  • Hong Cheol-Hyun;Lee Ki-Baik;Yang Jang-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.68-77
    • /
    • 2005
  • A transient liquid crystal technique has become one of the most effective ways in measuring the local heat transfer coefficients on the entire surface. The key Point of this technique is to convert the inlet flow temperature into an exponential temperature profile using a mesh heater. In order to verify the validity of this technique. the heat transfer characteristics on the wall surface by a pair of longitudinal vortices is investigated experimently and numerically. A standard ${\kappa}-{\varepsilon}$ is used for the numerical analysis of turbulent flow field. It is found from experiment and numerical analysis that two peak values exist over the whole domain. as the longitudinal vortices move to the farther downstream. these peak values decrease and the dimensionless averaged Nusselt number with the lapse of time is maintained nearly at constant values. The experiment results obtained from the present experiment in terms of the transient liquid crystal technique are in good agreement with the numerical results. Therefore, the transient liquid crystal technique developed for the measurement of heat transfer coefficient is proved to be a valid method.

A Comparative Study on the Convective Heat Transfer Measurement Technique based on Liquid Crystal (액정을 이용한 대류 열전달 측정 방법의 비교 연구)

  • 정기호;송기범;고기탁;김귀순
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.37-43
    • /
    • 2002
  • There have been numerous experimental studies for heat transfer measurement technique. This study investigates optical methods for measuring local heat transfer coefficient using thermochromic liquid crystal. Transient and steady methods have been utilized to measure local heat transfer coefficient on a cylinder with a cross flow. The steady method is based on the heat-coating technique and two transient methods adopt by-pass technique and insertion technique, respectively. Both techniques of transient method employ heating technique in which the flow is heated by using the electric heater and cooling technique which cools the preheated cylinder. Experimental results indicate that each methods have nearly similar results. Detailed discussions have been made for its own advantages and disadvantages.

Heat Transfer and Solidification in the Inviscid Stagnation Flow (비점성 정체 유동 하에서의 응고와 열전달)

  • Yoo Joo-Sik;Kim Yong-Jin
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The instantaneous location of the solid-liquid interface is fixed for all times by a coordinate transformation. Finite difference method is used to obtain the solution of the unsteady problem, and the growth rate of solid and the transient heat transfer from the surfaces of solid are investigated. The transient solution is dependent on the three dimensionless parameters, but the final steady state is determined by only one parameter of temperature ratio/conductivity ratio. It is observed that the instantaneous heat flux at the surface of solid can be obtained with sufficient accuracy by measuring the thickness of the solid or vice versa.

  • PDF

An Experimental Study on Quantitative Interpretation of Local Convective Heat Transfer for the Fin and Tube Heat Exchanger Using Lumped Capacitance Method (Lumped Capacitance 방법을 이용한 휜-관 열교환기의 정량적 국소 대류 열전달 해석을 위한 실험적 연구)

  • Kim, Ye-Yong;Kim, Gwi-Sun;Jeong, Gyu-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.205-215
    • /
    • 2001
  • An experimental study has been performed to investigate the heat transfer characteristics of fin and tube heat exchanger. The existing transient and steady methods are very difficult to apply for the measurements of heat transfer coefficients of a thin heat transfer model. In this study the lumped capacitance method was adopted. The heat transfer coefficients were measured by using the lumped capacitance method based on the liquid crystal thermography. The method is validated through impinging jet and flat plate flow experiments. The two experiments showed that the results of the lumped capacitance method with polycarbonate model showed very good agreements with those of the transient method with acryl model. The lumped capacitance method showed similar results regardless of the thickness of polycarbonate model. The method was also applied for the heat transfer coefficient measurements of a fin and tube heat exchanger. The quantitative heat transfer coefficients of the plate fin were successfully obtained. As the frontal velocity increased, the heat transfer coefficients were increased, but the color-band shape showed similar patterns regardless of frontal velocity.