• 제목/요약/키워드: Transient focal ischemia

검색결과 39건 처리시간 0.024초

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Protective Effect of Fermented Red Ginseng on a Transient Focal Ischemic Rats

  • Bae, Eun-Ah;Hyun, Yang-Jin;Choo, Min-Kyung;Oh, Jin-Kyung;Ryu, Jong-Hoon;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • 제27권11호
    • /
    • pp.1136-1140
    • /
    • 2004
  • Red ginseng and fermented red ginseng were prepared, and their composition of ginsenosides and antiischemic effect were investigated. When ginseng was steamed at 98-$100{\circ}C$ for 4h and dried for 5h at $60{\circ}C$, and extracted with alcohol, its main components were ginsenoside $Rg_3$ > ginsenoside $Rg_1$> ginsenoside $Rg_2$. When the ginseng was suspended in water and fermented for 5 days by previously cultured Bifidobacterium H-1 and freeze-dried (fermented red ginseng), its main components were compound K > ginsenoside $Rg_3{\geq}$ ginsenoside $Rg_2$. Orally administered red ginseng extract did not protect ischemia-reperfusion brain injury. However, fermented red ginseng significantly protected ischemica-reperfusion brain injury. These results suggest that ginsenoside Rh2 and compound K, which was found to be at a higher content in fermented red ginseng than red ginseng, may improve ischemic brain injury.

Isoflurane Induces Transient Anterograde Amnesia through Suppression of Brain-Derived Neurotrophic Factor in Hippocampus

  • Cho, Han-Jin;Sung, Yun-Hee;Lee, Seung-Hwan;Chung, Jun-Young;Kang, Jong-Man;Yi, Jae-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권3호
    • /
    • pp.139-144
    • /
    • 2013
  • Objective : Transient anterograde amnesia is occasionally observed in a number of conditions, including migraine, focal ischemia, venous flow abnormalities, and after general anesthesia. The inhalation anesthetic, isoflurane, is known to induce transient anterograde amnesia. We examined the involvement of brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB) in the underlying mechanisms of the isoflurane-induced transient anterograde amnesia. Methods : Adult male Sprague-Dawley rats were divided into three groups : the control group, the 10 minutes after recovery from isoflurane anesthesia group, and the 2 hours after recovery from isoflurane anesthesia group (n=8 in each group). The rats in the isoflurane-exposed groups were anesthetized with 1.2% isoflurane in 75% nitrous oxide and 25% oxygen for 2 hours in a Plexiglas anesthetizing chamber. Short-term memory was determined using the step-down avoidance task. BDNF and TrkB expressions in the hippocampus were evaluated by immunofluorescence staining and western blot analysis. Results : Latency in the step-down avoidance task was decreased 10 minutes after recovery from isoflurane anesthesia, whereas it recovered to the control level 2 hours after isoflurane anesthesia. The expressions of BDNF and TrkB in the hippocampus were decreased immediately after isoflurane anesthesia but were increased 2 hours after isoflurane anesthesia. Conclusion : In this study, isoflurane anesthesia induced transient anterograde amnesia, and the expressions of BDNF and TrkB in the hippocampus might be involved in the underlying mechanisms of this transient anterograde amnesia.

Semi-Quantitative Analyses of Hippocampal Heat Shock Protein-70 Expression Based on the Duration of Ischemia and the Volume of Cerebral Infarction in Mice

  • Choi, Jong-Il;Kim, Sang-Dae;Kim, Se-Hoon;Lim, Dong-Jun;Ha, Sung-Kon
    • Journal of Korean Neurosurgical Society
    • /
    • 제55권6호
    • /
    • pp.307-312
    • /
    • 2014
  • Objective : We investigated the expression of hippocampal heat shock protein 70 (HSP-70) infarction volume after different durations of experimental ischemic stroke in mice. Methods : Focal cerebral ischemia was induced in mice by occluding the middle cerebral artery with the modified intraluminal filament technique. Twenty-four hours after ischemia induction, both hippocampi were extracted for HSP-70 protein analyses. Slices from each hemisphere were stained with 2,3,5-triphenyltetrazolium chloride (2%), and infarction volumes were calculated. HSP-70 levels were evaluated using western blot and enzyme-linked immunosorbent assay (ELISA). HSP-70 subtype (hsp70.1, hspa1a, hspa1b) mRNA levels in the hippocampus were measured using reverse transcription-polymerase chain reaction (RT-PCR). Results : Cerebral infarctions were found ipsilateral to the occlusion in 10 mice exposed to transient ischemia (5 each in the 30-min and 60-min occlusion groups), whereas no focal infarctions were noted in any of the sham mice. The average infarct volumes of the 2 ischemic groups were $22.28{\pm}7.31mm^3$ [30-min group${\times}$standard deviation (SD)] and $38.06{\pm}9.53mm^3$ (60-min group${\times}$SD). Western blot analyses and ELISA showed that HSP-70 in hippocampal tissues increased in the infarction groups than in the sham group. However, differences in HSP-70 levels between the 2 infarction groups were statistically insignificant. Moreover, RT-PCR results demonstrated no relationship between the mRNA expression of HSP-70 subtypes and occlusion time or infarction volume. Conclusion : Our results indicated no significant difference in HSP-70 expression between the 30- and 60-min occlusion groups despite the statistical difference in infarction volumes. Furthermore, HSP-70 subtype mRNA expression was independent of both occlusion duration and cerebral infarction volume.

Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia

  • Qian, Yong Ri;Lee, Mu-Jin;Hwang, Shi-Nae;Kook, Ji-Hyun;Kim, Jong-Keun;Bae, Choon-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.435-440
    • /
    • 2010
  • Valproic acid (VPA) is a well-known anti-epileptic and mood stabilizing drug. A growing number of reports demonstrate that VPA is neuroprotective against various insults. Despite intensive efforts to develop new therapeutics for stroke over the past two decades, all treatments have thus far failed to show clinical effect because of treatment-limiting side effects of the drugs. Therefore, a safety-validated drug like VPA would be an attractive candidate if it has neuroprotective effects against ischemic insults. The present study was undertaken to examine whether pre- and post-insult treatments with VPA protect against brain infarct and neurological deficits in mouse transient (tMCAO) and permanent middle cerebral artery occlusion (pMCAO) models. In the tMCAO (2 hr MCAO and 22 hr reperfusion) model, intraperitoneal injection of VPA (300 mg/kg, Lp.) 30 min prior to MCAO significantly reduced the infarct size and the neurological deficit. VPA treatment immediately after reperfusion significantly reduced the infarct size. The administration of VPA at 4 hr after reperfusion failed to reduce the infarct size and the neurological deficit. In the pM CAO model, treatment with VPA (300 mg/kg, i.p.) 30 min prior to MCAO significantly attenuated the infarct size, but did not affect the neurological deficit. Western blot analysis of acetylated H3 and H4 protein levels in extracts from the ischemic cortical area showed that treatment with VPA increased the expression of acetylated H3 and H4 at 2 hrs after MCAO. These results demonstrated that treatment with VPA prior to ischemia attenuated ischemic brain damage in both mice tMCAO and pMCAO models and treatment with VPA immediately after reperfusion reduced the infarct area in the tMCAO model. VPA could therefore be evaluated for clinical use in stroke patients.

Role of a Burr Hole and Calvarial Bone Marrow-Derived Stem Cells in the Ischemic Rat Brain : A Possible Mechanism for the Efficacy of Multiple Burr Hole Surgery in Moyamoya Disease

  • Nam, Taek-kyun;Park, Seung-won;Park, Yong-sook;Kwon, Jeong-taik;Min, Byung-kook;Hwang, Sung-nam
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권3호
    • /
    • pp.167-174
    • /
    • 2015
  • Objective : This study investigates the role of a burr hole and calvarial bone marrow-derived stem cells (BMSCs) in a transient ischemic brain injury model in the rat and postulates a possible mechanism for the efficacy of multiple cranial burr hole (MCBH) surgery in moyamoya disease (MMD). Methods : Twenty Sprague-Dawley rats (250 g, male) were divided into four groups : normal control group (n=5), burr hole group (n=5), ischemia group (n=5), and ischemia+burr hole group (n=5). Focal ischemia was induced by the transient middle cerebral artery occlusion (MCAO). At one week after the ischemic injury, a 2 mm-sized cranial burr hole with small cortical incision was made on the ipsilateral (left) parietal area. Bromodeoxyuridine (BrdU, 50 mg/kg) was injected intraperitoneally, 2 times a day for 6 days after the burr hole trephination. At one week after the burr hole trephination, brains were harvested. Immunohistochemical stainings for BrdU, CD34, VEGF, and Doublecortin and Nestin were done. Results : In the ischemia+burr hole group, BrdU (+), CD34 (+), and Doublecortin (+) cells were found in the cortical incision site below the burr hole. A number of cells with Nestin (+) or VEGF (+) were found in the cerebral parenchyma around the cortical incision site. In the other groups, BrdU (+), CD34 (+), Doublecortin (+), and Nestin (+) cells were not detected in the corresponding area. These findings suggest that BrdU (+) and CD34 (+) cells are bone marrow-derived stem cells, which may be derived from the calvarial bone marrow through the burr hole. The existence of CD34 (+) and VEGF (+) cells indicates increased angiogenesis, while the existence of Doublecortin (+), Nestin (+) cells indicates increased neurogenesis. Conclusion : Based on these findings, the BMSCs through burr holes seem to play an important role for the therapeutic effect of the MCBH surgery in MMD.

Effect of Chungpaesagan-tang on ischemic damage induced by MCAO in spontaneously hypertensive rats

  • Kim, Ko-Eun;Kim, Soo-Yong;Kim, Eun-Young;Kim, Bum-Hoi;Shin, Jung-Won;Lee, Hyun-Sam;Sohn, Young-Joo;Jung, Hyuk-Sang;Sohn, Nak-Won
    • Advances in Traditional Medicine
    • /
    • 제8권4호
    • /
    • pp.430-439
    • /
    • 2008
  • Chungpaesagan-tang (CPSGT) is most frequently used to treat ischemic brain injury in tradition Korean medicine. Clinically, cerebral ischemia is likely to be accompanied by preexisting or complicating disease. However, animal models used to examine the effects of herbal medicines on cerebral ischemia have not given this issue sufficient consideration. The present study was undertaken to determine the effects of CPSGT on focal cerebral ischemia in normal and SHR rats subjected to transient middle cerebral artery occlusion (MCAO). Animals were divided into four groups: Normal (Sprague-Dawley) rats subjected to MACO (the NC+MCAO group), normal rats subjected to MCAO and then administered CPSGT (NC + MCAO + CP), SHR rats subjected to MCAO (SHR + MCAO), and SHR rats subjected to MCAO and then administered CPSGT (SHR + MCAO + CP). MCAO was performed using the intraluminal method. CPSGT was administrated orally twice (1 and 4 h) after MCAO. All animals were sacrificed at 24 h postoperatively. Brain tissues were stained with hematoxylin & eosin, to examine the effect of CPSGT on ischemic brain tissues. In addition, changes in TNF-$\alpha$ expression in ischemic areas were examined by immunostaining. CPSGT was found to significantly reduce infarction areas in normal and SHR rats and infarction volumes in SHR rats. Similarly, CPGST markedly increased neuron numbers and sizes in all treated groups, except cell sizes in SHRs. Furthermore, CPSGT reduced TNF-$\alpha$ expression in MCAO administered SHR rats. The findings of the present study suggest that CPSGT effectively ameliorates neuron damage caused by MACO-induced cerebral ischemia, and that it has a significant neuroprotective effect after cerebral ischemia in SHR.

S100ß, Matrix Metalloproteinase-9, D-dimer, and Heat Shock Protein 70 Are Serologic Biomarkers of Acute Cerebral Infarction in a Mouse Model of Transient MCA Occlusion

  • Choi, Jong-Il;Ha, Sung-Kon;Lim, Dong-Jun;Kim, Sang-Dae;Kim, Se-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권5호
    • /
    • pp.548-558
    • /
    • 2018
  • Objective : Diagnosing acute cerebral infarction is crucial in determining prognosis of stroke patients. Although many serologic tests for prompt diagnosis are available, the clinical application of serologic tests is currently limited. We investigated whether $S100{\beta}$, matrix metalloproteinase-9 (MMP-9), D-dimer, and heat shock protein 70 (HSP70) can be used as biomarkers for acute cerebral infarction. Methods : Focal cerebral ischemia was induced using the modified intraluminal filament technique. Mice were randomly assigned to 30-minute occlusion (n=10), 60-minute occlusion (n=10), or sham (n=5) groups. Four hours later, neurological deficits were evaluated and blood samples were obtained. Infarction volumes were calculated and plasma $S100{\beta}$, MMP-9, D-dimer, and HSP70 levels were measured using enzyme-linked immunosorbent assay. Results : The average infarction volume was $12.32{\pm}2.31mm^3$ and $46.9{\pm}7.43mm^3$ in the 30- and 60-minute groups, respectively. The mean neurological score in the two ischemic groups was $1.6{\pm}0.55$ and $3.2{\pm}0.70$, respectively. $S100{\beta}$, MMP-9, and HSP70 expressions significantly increased after 4 hours of ischemia (p=0.001). Furthermore, $S100{\beta}$ and MMP-9 expressions correlated with infarction volumes (p<0.001) and neurological deficits (p<0.001). There was no significant difference in D-dimer expression between groups (p=0.843). The area under the receiver operating characteristic curve (AUC) showed high sensitivity and specificity for MMP-9, HSP70 (AUC=1), and $S100{\beta}$ (AUC=0.98). Conclusion : $S100{\beta}$, MMP-9, and HSP70 can complement current diagnostic tools to assess cerebral infarction, suggesting their use as potential biomarkers for acute cerebral infarction.

The Protective Effect of Black Ginseng Against Transient Focal Ischemia-induced Neuronal Damage in Rats

  • Park, Hyun-Jung;Shim, Hyun-Soo;Kim, Kyung-Soo;Shim, In-Sop
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.333-338
    • /
    • 2011
  • Black ginseng (BG) has been widely used as herbal treatment for improving physiological function. In order to investigate the neuroprotective action of this herbal medicine, we examined the influence of BG on the learning and memory of rats using the Morris water maze, and we studied the effects of BG on the central cholinergic system and neural nitric oxide synthesis in the hippocampus of rats with neuronal and cognitive impairment. After middle cerebral artery occlusion was applied for 2h, the rats were administered BG (100 or 400 $mgkg^{-1}$, p.o.) daily for 2 weeks, followed by training and performance of the Morris water maze test. The rats with ischemic insults showed impaired learning and memory on the tasks. Treatment with BG produced improvement in the escape latency to find the platform. Further, the BG groups showed a reduced loss of cholinergic immunoreactivity and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)-positive neurons in the hippocampus compared to that of the ISC group. These results demonstrated that BG has a protective effect against ischemia-induced neuronal and cognitive impairment. Our results suggest that BG might be useful for the treatment of vascular dementia.