• Title/Summary/Keyword: Transient Heat Transfer Analysis

Search Result 234, Processing Time 0.02 seconds

A Study on the Boil-Off Rate Prediction of LNG Cargo Containment Filled with Insulation Powders (단열 파우더를 채용한 LNGCC의 BOR예측에 관한 연구)

  • Han, Ki-Chul;Hwang, Soon-Wook;Cho, Jin-Rae;Kim, Joon-Soo;Yoon, Jong-Won;Lim, O-Kaung;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.193-200
    • /
    • 2011
  • A BOR(Boil-Off Rate) prediction model for the NO96 membrane-type LNG insulation containment filled with superlite powders during laden voyage is presented in this paper. Finite element model for the unsteady-state heat transfer analysis is constructed by considering the air and water conditions and by employing the homogenization method to simplify the complex insulation material composition. BOR is evaluated in terms of the total amount of heat invaded into LNGCC and its variation to the major variables is investigated by the parametric heat transfer analysis. Based upon the parametric results, a BOR prediction model which is in function of the LNG tank size, the insulation layer thickness and the powder thermal conductivity is derived. Through the verification experiment, the accuracy of the derived prediction model is justified such that the maximum relative difference is less than 1% when compared with the direct numerical estimation using the FEM analysis.

Temperature-Dependent Stress Analysis of Rotating Functionally Graded Material Gas Turbine Blade Considering Operating Temperature and Ceramic Particle Size (운전온도와 세라믹 입자크기를 고려한 회전하는 경사기능성 가스터빈 블레이드의 응력해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.193-203
    • /
    • 2014
  • Temperature-dependent stress analysis and heat transfer analysis of a rotating gas turbine blade made of functionally graded materials (FGMs) are presented considering turbine operating temperature and ceramic particle size. The material properties of functionally graded materials are assumed to vary continuously and smoothly across the thickness of the thin-walled blade. For obtaining system stiffness reflecting these characteristics, the one-dimensional heat transfer equation is applied along the thickness of the thin-walled blade for determining the temperature distribution. Using the results of the temperature analysis, the equations of motion of a rotating blade are derived with hybrid deformation variable modeling method along with the Rayleigh-Ritz assumed mode methods. The validity of the derived rotating blade model is evaluated by comparing its transient responses and temperature distribution with the results obtained using a commercial finite element code. The maximum tensile stress with operating speed and gradient index are obtained. Furthermore, the gradient index that minimizes blade temperature was investigated.

Operating characteristics of a heat pipe with two heat sources (두개의 열원이 부착된 히트파이프의 동작 특성)

  • Park, Jong-Heung;No, Hong-Gu;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.303-315
    • /
    • 1998
  • Numerical and experimental studies on a heat pipe with two heat sources have been performed to investigate the operating characteristics. Numerical analysis was performed based on the cylindrical two-dimensional incompressible laminar flow for the vapor space and the conjugate heat transfer for the entire heat pipe. Experimental study with a 0.45 m length copper-water heat pipe was also performed to validate the numerical modeling for the heat input range from 29 W to 47 W on each heater. As results, the temperature profiles at the outer wall for the single active heat source as well as the temperature profiles for the switching operation between two heat sources are suggested. Due to the axial conduction, it is found that the temperature drop between the evaporator and the condenser appears small when the heat source closer to the condenser is turned on. For the switching operation in the present study, the transient time is about 700s and the temperatures at the locations of both heat source are same in 130s after switching.

Thermodynamic simulation and structural optimization of the collimator in the drift duct of EAST-NBI

  • Ning Tang;Chun-dong Hu;Yuan-lai Xie;Jiang-long Wei;Zhi-Wei Cui;Jun-Wei Xie;Zhuo Pan;Yao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4134-4145
    • /
    • 2022
  • The collimator is one of the high-heat-flux components used to avoid a series of vacuum and thermal problems. In this paper, the heat load distribution throughout the collimator is first calculated through experimental data, and a transient thermodynamic simulation analysis of the original model is carried out. The error of the pipe outlet temperature between the simulated and experimental values is 1.632%, indicating that the simulation result is reliable. Second, the model is optimized to improve the heat transfer performance of the collimator, including the contact mode between the pipe and the flange, the pipe material and the addition of a twisted tape in the pipe. It is concluded that the convective heat transfer coefficient of the optimized model is increased by 15.381% and the maximum wall temperature is reduced by 16.415%; thus, the heat transfer capacity of the optimized model is effectively improved. Third, to adapt the long-pulse steady-state operation of the experimental advanced superconducting Tokamak (EAST) in the future, steady-state simulations of the original and optimized collimators are carried out. The results show that the maximum temperature of the optimized model is reduced by 37.864% compared with that of the original model. The optimized model was changed as little as possible to obtain a better heat exchange structure on the premise of ensuring the consumption of the same mass flow rate of water so that the collimator can adapt to operational environments with higher heat fluxes and long pulses in the future. These research methods also provide a reference for the future design of components under high-energy and long-pulse operational conditions.

RELAP5 Analysis of a Condensation Experiment in an Inverted U-tube

  • Park, Chul-Jin;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.383-388
    • /
    • 1995
  • Two-phase transient phenomena in the noncondensable gas-filled closed loop was investigated numerically using the RELAP5/MOD3 version 3.1 computer code. The condensation heat transfer correlation for noncondensable gases was studied in detail. Two modes of the reflux condensation which can be characterized by countercurrent flow of steam and its condensed water and the oscillatory between reflux condensation and natural circulation were predicted well. However, the natural circulation mode which the condensed water carried over the U-bend concurrently with steam was failed to predict.

  • PDF

Prediction of Transient Slab Heating Characteristics in a Walking Beam Type of Reheating Furnace

  • Han Sang-Heon;Baek Seung-Wook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.405-407
    • /
    • 2006
  • A full-scale simulation of steel mill reheating furnace was performed by using parallel computing technology. Turbulent flow as well as chemical reaction is considered and solved in a coupled manner while radiation is also calculated. The movement of slab is taken into account so that a more precise observation of its heating characteristics becomes possible through this numerical analysis.

  • PDF

Analysis of ramp-rate limitation and current redistribution in two-strand superconducting cable (두 가닥 초전도 케이블에서 자속변화한계와 전류 재분배 해석)

  • 김석호;정상권
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.45-48
    • /
    • 2003
  • Ramp-rate limitation is a serious obstacle for successful operation of fast charging and discharging magnet Ramp-rate limitation is hard to expect or fully investigate due to its electric and thermo-hydraulics couplings. In this paper, the simplest case of ramp-rate limitation is investigated with two-strand superconducting cable model considering transient heat transfer The simulation results are compared with the experimental results.

  • PDF

The Arrangement of Heaters for Rubber Injection Molds using FEM and Optimal Design Method (유한요소법과 최적설계 기법을 이용한 고무 사출 금형 히터 배치)

  • Kim, Myung-Hun;Han, Jeong-Young;Choi, Eun-Ho;Bae, Won-Byong;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Temperature control of a rubber injection mold is important for the dimensional accuracy of product. The main objective of this paper is to optimize the arrangement of heaters by FEM and optimal design method. Firstly, 3-dimensional transient heat transfer analysis was carried out for a square specimen mold. Results of FE analysis are a good agreement with the experimental results, showing about 1.22~7.22% error in temperature distribution. Secondly, we suggested the optimal method about an arrangement of heaters of rubber injection mold by using the optimal design technique. Distances between heater's center and the contact surface of mold, distances between heater's center and symmetric surface were considered as design variables. And the variances between the temperatures of cavity surfaces and their average temperature were used as the objective functions. Applying the optimal solution, the temperature variation was improved about 52.9~88.1 % compared to the existing mold. As a result of sensitivity analysis for design variables, design variables parallel to the direction of the split plane in mold affect the largest on the surface temperature variation in mold cavity.

THERMAL AND STRUCTURAL ANALYSIS OF CALANDRIA VESSEL OF A PHWR DURING A SEVERE ACCIDENT

  • Kulkarni, P.P.;Prasad, S.V.;Nayak, A.K.;Vijayan, P.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.469-476
    • /
    • 2013
  • In a postulated severe core damage accident in a PHWR, multiple failures of core cooling systems may lead to the collapse of pressure tubes and calandria tubes, which may ultimately relocate inside the calandria vessel forming a terminal debris bed. The debris bed, which may reach high temperatures due to the decay heat, is cooled by the moderator in the calandria. With time, the moderator is evaporated and after some time, a hot dry debris bed is formed. The debris bed transfers heat to the calandria vault water which acts as the ultimate heat sink. However, the questions remain: how long would the vault water be an ultimate heat sink, and what would be the failure mode of the calandria vessel if the heat sink capability of the reactor vault water is lost? In the present study, a numerical analysis is performed to evaluate the thermal loads and the stresses in the calandria vessel following the above accident scenario. The heat transfer from the molten corium pool to the surrounding is assumed to be by a combination of radiation, conduction, and convection from the calandria vessel wall to the vault water. From the temperature distribution in the vessel wall, the transient thermal loads have been evaluated. The strain rate and the vessel failure have been evaluated for the above scenario.

Residual Stress Distribution on the Fillet Weldment used by Finite Element Method (유한요소법을 이용한 필렛용접 이음부의 잔류응력분포)

  • Kim, Hyun Sung;Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.197-207
    • /
    • 2000
  • A transient heat transfer analysis and thermo-elastic analysis have been performed for the residual stress distribution on the fillet weldment used by finite element method. Specimen is fabricated single-pass fillet welding. This computation was performed for conditions including surface heat flux and temperature dependent thermo-physical properties using by heat input as parameter. Also, cut-off temperature of residual stress estimation by thermo-elastic analysis is determined. The fillet weldment were measured to determined their residual stress distributions for using hole-drilling method. As result, it was found that large tensile residual stress is about material yield strength, and the numerical simulation results for finite element method similar to residual stresses by hole-drilling method and other exiting research. Also, cut-off temperature is effectively determined by temperature which calculated maximum thermal stress equal to material yield strength.

  • PDF