• Title/Summary/Keyword: Transient Dynamic Response

Search Result 347, Processing Time 0.03 seconds

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

Performance Improvement of Pneumatic Artificial Muscle Manipulators Using Magneto-Rheological Brake

  • Ahn, Kyoung-Kwan;Cong Thanh, TU Diep;Ahn, Young-Kong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.778-791
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. Then it is not easy to realize the performance of transient response of pneumatic artificial muscle manipulator (PAM manipulator) due to the changes in the external inertia load with high speed. In order to realize satisfactory control performance, a variable damper-Magneto­Rheological Brake (MRB), is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

Rotordynamic Analysis of a High Thrust Liquid Rocket Engine Turbopump (고추력 액체 로켓 엔진용 터보펌프의 회전체동역학 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.688-694
    • /
    • 2008
  • A rotordynamic analysis is performed for a high thrust class liquid rocket engine turbopump considering the dynamic characteristics of ball bearings and pump noncontact seals. Complex eigenvalue problems are solved to predict the rotating natural frequencies and damping ratios as a function of rotating speeds. Synchronous rotor mass unbalance response and time transient response analyses are also performed to figure out the rotor critical speed and the onset speed of instability. From the numerical analysis, it is found that the rear bearing stiffness is most important parameter for the critical speed and instability because the 1st mode is turbine side shaft bending mode. The pump seal effect on the critical speed is enlarged as the rear bearing stiffness decreases and the front bearing stiffness increases.

Bidirectional Charging/Discharging Digital Control System for Eco-friendly Capacitor Energy Storage Device Implemented by TMS320F28335 chip (TMS320F28335로 구현한 친환경 커패시터 전력저장장치의 양방향 디지털 제어 충/방전 시스템)

  • Lee, Jung-Im;Lee, Jong-Hyun;Jung, An-Yoel;Lee, Choon-Ho;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.188-198
    • /
    • 2010
  • Recently, as the demand of the environmental-friendly energy storage system such as an electric double-layer condenser increases, that of the bidirectional charger/discharger for the systems also increases. However, when charging/discharging mode-change occurs, the charger/discharger employing a bi-directional DC-DC converter with a commercialized analog controller has a complex circuit scheme, and a poor transient response. On the other hand, if a single digital controller is used for the bi-directional mode, the system performances can be improved by application of an advanced power-processing algorithm. In the paper, an environmental-friendly power storage systems including an Electric Double Layer Capacitor(EDLC) banks were developed with a bi-directional buck-boost converter and a digital signal processor (TMS320F28335). A simulation test-bed was realized and tested by MATLAB Simulink, and the hardware experiment was performed which shows that the dynamic response was improved such as the simulation results.

Direct Time Domain Method for Nonlinear Earthquake Response Analysis of Dam-Reservoir Systems (댐-호소계 비선형 지진응답의 직접시간영역 해석기법)

  • Lee, Jin-Ho;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • An analysis method is proposed for the transient linear or nonlinear analysis of dynamic interactions between a flexible dam body and reservoir impounding compressible water under earthquake loadings. The coupled dam-reservoir system consists of three substructures: (1) a dam body with linear or nonlinear behavior; (2) a semi-infinite fluid region with constant depth; and (3) an irregular fluid region between the dam body and far field. The dam body is modeled with linear and/or nonlinear finite elements. The far field is formulated as a displacement-based transmitting boundary in the frequency domain that can radiate energy into infinity. Then the transmitting boundary is transformed for the direct coupling in the time domain. The near field region is modeled as a compressible fluid contained between two substructures. The developed method is verified and applied to various earthquake response analyses of dam-reservoir systems. Also, the method is applied to a nonlinear analysis of a concrete gravity dam. The results show the location and severity of damage demonstrating the applicability to the seismic evaluation of existing and new dams.

Design of an Automatic Winch System for Small Fishing Vessel (소형 어선의 자동 권양 윈치시스템 설계)

  • 이대재;김진건;김병삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.157-165
    • /
    • 2000
  • A small hydraulic winch system with an automatic tension control unit was designed to improve the work efficiency of coastal small vessels and the dynamic response characteristics of the winch system operated in the open loop condition was investigated. The inlet and the outlet pressures in hydraulic motor, the torque and the rotating speed of winch drum were measured as a function of time, and the behaviour in autotension mode for stepped load changes was analyzed. The results obtained are summarized as follows : 1. The developed winch system for coastal small vessels will result in better fishing with improved efficiency and lower manpower consumption by remote control of winch system. 2. The rotating delay times of winch drum for on/off operations of solenoid valve were 0.09 see at CW mode and 0.04 sec at CCW mode, respectively. After the solenoid valve was controlled, response characteristics were unstable slightly but showed good tracking behaviour over short time. 3. The driving torque of winch system in autotension mode was kept almost constant of 55.9 kgf·m, and 11.1 then the rotating speed of winch drum was kept almost constant of 5.1 rpm in the larger torque than 55.9 kgf·m and 11.1 rpm in the lower torque than that. 4. The 5% settling times in the transient response characteristics of autotension mode under rapid increasing and decreasing conditions of load were 0.12 sec and 0.2 sec, respectively, and then the rotating speeds were 11 rpm and 5.3 rpm, respectively. 5. The tracking behaviour of torque and rotating speed by remote control operation were stable within 0.23 sec at CW mode and 0.37 sec at CCW mode, respectively.

  • PDF

Design of Controller for Rapid Thermal Process Using Evolutionary Computation Algorithm and Fuzzy Logic (진화 연산 알고리즘과 퍼지 논리를 이용한 고속 열처리 공정기의 제어기 설계)

  • Hwang, Min-Woong;Do, Hyun-Min;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.37-47
    • /
    • 1998
  • This paper proposes a controller design method using the evolutionary computation algorithm and the fuzzy logic to control the wafer temperature in rapid thermal processing. First, we design the feedforward static controller to provide the control powers of the lamps for the given steady state temperature. Second, the feedforward dynamic controller is designed for the additional control powers to achieve a given transient response. These feedforward controllers are implemented by using the fuzzy logic to act as a global nonlinear controller over a wide range of operating points. The parameters of these controllers are optimized by using the evolutionary computation algorithm so that it can be used when the mathematical model is not available. In addition, the feedback error controller is introduced to compensate the feedforward controllers when there exist disturbances and modeling errors. The gain of feedback error controller is also obtained by the evolutionary computation algorithm. Through simulations, we verify the proposed control system can give a satisfactory performance.

  • PDF

A Study on Excitation System for Synchronous Generator Using Two State Three Phase PWM AC/DC Converter (2단 3상 PWM AC/DC 컨버터를 이용한 동기발전기 여자제어시스템)

  • Lee, Sang-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.96-106
    • /
    • 2007
  • The terminal voltage of a synchronous generator is maintained by the field current control of excitation system. Generally AC/DC converter which is component of AVR(Automatic Voltage Regulator) system for excitation current control is connected to diode rectifier and DC/DC converter system. In the case of diode rectifier system of phase controlled converter as AC/DC converter have low power factor and harmonics of lower order in the line current. In this paper, two stage three phase PWM AC/DC converter is studied to solve these problems. The characteristics of a proposed converter reduces the harmonics and reactive power of the distribution line and has fast dynamic response in transient period using boost converter and current control mode buck converts. The proposed method is verified by the computer simulation and experimental results in prototype generation system.

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

New Control Method for Power Decoupling of Electrolytic Capacitor-less Photovoltaic Micro-Inverter with Primary Side Regulation

  • Irfan, Mohammad Sameer;Shin, Jong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.677-687
    • /
    • 2018
  • This paper presents a novel power decoupling control scheme with the bidirectional buck-boost converter for primary-side regulation photovoltaic (PV) micro-inverter. With the proposed power decoupling control scheme, small-capacitance film capacitors are used to overcome the life-span and reliability limitations of the large-capacitance electrolytic capacitors. Then, an improved flyback PV inverter is employed in continuous conduction mode with primary-side regulation for the PV power conditioning. The proposed power-decoupling controller shares the reference for primary side current regulation of the flyback PV inverter. The decoupling controller shapes the input current of the bidirectional buck-boost converter. The shared reference eliminates the phase-delay between the input current to the bidirectional buck-boost converter and the double frequency current at the PV primary current. The elimination of the phase-delay in dynamic response enhances the ripple rejection capability of the power decoupling buck-boost converter even with small film capacitor. With proposed power decoupling control scheme, the additional advantage of the primary-side regulation of flyback PV inverter is that there is no need to have an extra current sensor for obtaining the ripplecurrent reference of the decoupling current-controller of the power-decoupling buck-boost converter. Therefore, the proposed power decoupling control scheme is cost-effective as well as the size benefit. A new transient analysis is carried out which includes the source voltage dynamics instead of considering the source voltage as a pure voltage source. For verification of the proposed control scheme, simulation and experimental results are presented.