• Title/Summary/Keyword: Transient Conditions

Search Result 1,115, Processing Time 0.038 seconds

Photovoltaic Generation System Simulation using Real Field Weather Conditions

  • Park, Min-Won;Yu, In-Keun
    • Journal of IKEEE
    • /
    • v.5 no.2 s.9
    • /
    • pp.121-127
    • /
    • 2001
  • Actual system apparatuses are necessary in order to verify the efficiency and stability of photovoltaic(PV) generation systems considering the size of solar panel, the sort of converter type, and the load conditions and so on. Moreover, it is hardly possible to compare a certain MPPT control scheme with others under the exactly same weather and load conditions as well. For the purpose of solving above mentioned difficulties in a laboratory basis, a transient simulation of PV generation system using real field weather conditions is indispensable. A straightforward simulation scheme with cost effective hardware structures under real weather conditions is proposed in this paper using EMTDC type of transient analysis simulators. Firstly, a solar cell has been modeled with VI characteristic equations, and then the real field data of weather conditions are interfaced to the EMTDC through Fortran program interface method. As a result, the stability and the efficiency analysis of PV generation systems according to various hardware structures and MPPT controls are easily possible under the exactly same weather conditions.

  • PDF

Analysis of Transient Heat Transfer Characteristics of Dish-Type Solar Receiver System (접시형 태양열 흡수기의 Transient 열전달 특성에 대한 수치해석 연구)

  • Lee, Ju-Han;Seo, Joo-Hyun;Oh, Sang-June;Lee, Jin-Kyu;Seo, Tae-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2094-2099
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Analytical Solution for Transient Temperature Distribution in Fillet Arc Welding (필릿 용접 공정에서 온도 분포 예측을 위한 해석적 모델)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.68-81
    • /
    • 1995
  • This paper presents an analytical solution to predict the transient temperature distribution in fillet arc welding. The analytical solution is obtained by solving a transient three -dimensional heat conduction equation with convection boundary conditions on the surfaces of an infinite plate with finite thicknesses, and mapping an infinite plate onto the fillet weld geometry with energy equation. The electric arc heat input on fillet weld and on infinite plate is assumed to have a traveling bivariate Gaussian distribution. To check the validity of the solution, GTA and FCA welding experiments were performed under various welding conditions. The actual isotherms of the weldment cross - sections at various distances from the arc start point are compared with those of simulation result. As the result shows a satisfactory accuracy, this analytical solution can be used to predict the transient temperature distribution in the fiIIet weld of finite thickness under a moving bivariate Gaussian distributed heat source. The simplicity and short calculation time of the analytical solution provides rationales to use the analytical solution for modeling the welding control systems or for an optimization tool of welding process parameters.

  • PDF

Transient effects of tendon disconnection on the survivability of a TLP in moderate-strength hurricane conditions

  • Kim, Moo-Hyun;Zhang, Zhi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The primary objective of this paper is to investigate the dynamic stability and survivability of a four-column classic TLP (tension-leg platform) under less-than-extreme storm conditions where one or more tendons have been lost due to damage or disconnect. The transient responses of the platform and tendon tensions at the moment of disconnection are particularly underscored. The numerical simulation is based on the BE-FE hybrid hull-tendon-riser coupled dynamic analysis in time domain. Compared to the common industry practice of checking the system without a failed tendon in the beginning, the maximum tension on the neighboring tendon can be significantly increased at the moment of disconnection due to the snap-like transient effects, which can lead to unexpected failure of the total system. It is also found that the transient effects can be reduced with the presence of TTRs (top-tensioned risers) with pneumatic tensioners. It is also seen that the TLP cannot survive in the 100-yr hurricane condition after losing one tendon.

Transient heat transfer of unidirectional (1D) and multidirectional (2D/3D) functionally graded panels

  • Samarjeet Kumar;Vishesh Ranjan Kar
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.587-602
    • /
    • 2023
  • This article presents the numerical modelling of transient heat transfer in highly heterogeneous composite materials where the thermal conductivity, specific heat and density are assumed to be directional-dependent. This article uses a coupled finite element-finite difference scheme to perform the transient heat transfer analysis of unidirectional (1D) and multidirectional (2D/3D) functionally graded composite panels. Here, 1D/2D/3D functionally graded structures are subjected to nonuniform heat source and inhomogeneous boundary conditions. Here, the multidirectional functionally graded materials are modelled by varying material properties in individual or in-combination of spatial directions. Here, fully spatial-dependent material properties are evaluated using Voigt's micromechanics scheme via multivariable power-law functions. The weak form is obtained through the Galerkin method and solved further via the element-space and time-step discretisation through the 2D-isoparametric finite element and the implicit backward finite difference schemes, respectively. The present model is verified by comparing it with the previously reported results and the commercially available finite element tool. The numerous illustrations confirm the significance of boundary conditions and material heterogeneity on the transient temperature responses of 1D/2D/3D functionally graded panels.

3-Dimensional Numerical Analysis for Thermal Stratification in Surgeline in Nuclear Power Plant (원전 밀림관 열성층의 3 차원 수치해석)

  • Kim, Young-Jong;Kim, Maan-Won;Ko, Eun-Mi
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.729-734
    • /
    • 2008
  • A thermal stratification may occur in the horizontal parts of the surge line during operating transients of the pressurizer, which produces relatively high fatigue usage factor. Heat-up transient is the most severe case among the transient conditions. In this study, to study the relationship between the magnitude of thermal stratification and the length of vertical part of the surge line, some parametric fluid-structure interaction (FSI) analyses with different length variables of the vertical part of the surge line were performed for plant heat-up transient condition by using 3-dimensional numerical analysis. The conservativeness of the traditional finite element model for thermal stratification analysis based on the conservative assumption in the surge line was also discussed by comparison of the results of 3-dimensional transient FSI analysis of this study. Stresses calculated with 3-dimensional transient model were considerably reduced comparing with the traditional analysis.

  • PDF

Estimation of C(t) -Integral Under Transient Creep Conditions for a Cracked Pipe Subjected to Combined Mechanical and Thermal Loads Depending on Loading Conditions (열응력 및 기계응력이 작용하는 균열배관의 하중조건에 따른 천이 크리프 조건 C(t)-적분 평가)

  • Oh, Chang-Young;Song, Tae-Kwang;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.609-617
    • /
    • 2011
  • There is a trend towards the progressive use of higher operating temperatures and stresses to achieve improved efficiencies in power-generation equipment. It is important to perform the crack assessment under hightemperature and high-pressure conditions. The C(t)-integral is a key parameter in crack assessment for transient creep states. The estimation of the C(t)-integral is complex when considering the mechanical and thermal loads simultaneously. In this paper, we study estimation of C(t)-integral under combined mechanical and thermal load depending on loading conditions.

Changes of α-Motor Neuron Excitability after Low-Intensity Exercise with Transient Restriction of Blood Flow (일시적 혈류 제한과 함께 수행한 저강도 운동 후 알파운동신경원의 변화)

  • Kim, Jong-Soon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • PURPOSE: Low-intensity exercise with transient restriction of blood flow to muscle could be an alternative rehabilitation method which avoids the problems associated with conventional high-intensity exercise. However, the mechanism of low-intensity exercise with transient restriction of blood flow is not clearly known. Thus, the purpose of this study was to investigate the mechanism of improvement of muscular function after low-intensity exercise with transient restriction of blood flow using H-reflex analysis. METHODS: Twenty one healthy young adults with no medical history of neurological or musculoskeletal disorder voluntarily participated in this study. The ${\alpha}$-motor neuron excitability of the triceps surae was assessed using the H-reflex. The amplitude of the M-wave and H-reflex were measured across three conditions: rest, after low-intensity exercise without restriction of blood flow and after low-intensity exercise with restriction of blood flow. The subjects performed low-intensity ankle plantar flexion exercise at their own pace for one minute without or with transient restriction of blood flow achieved by a sphygmomanometer cuff on popliteal fossa at a pressure of 120mm of mercury(120 mmHg). RESULTS: No significant changes of the excitability of the ${\alpha}$-motor neuron were obtained across three different conditions. CONCLUSION: This study found that low-intensity exercise with transient restriction of blood flow did not influence to ${\alpha}$-motor neuron excitability of the triceps surae. From the results, I could come to the conclusion that further study will be required.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.

Transient Characteristics of NPT-IGBT with different temperatures (온도 변화에 따른 NPT-IGBT의 과도 특성)

  • 류세환;황광철;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.292-295
    • /
    • 2002
  • In this work, transient characteristics of NPT(Non Punch Through)-IGBT(Insulated Gate Bipolar Transistor) have been studied with different temperatures analytically. Power losses are caused by heat generated in MIT-IGBT for steady state and transient state conditions. We therefore have focused on the analysis of excess carrier concentration and excess charge injected into N-drift layer with different temperatures and have obtained anode voltage drop during turn-off with lifetime of 2.4[${\mu}$s].

  • PDF