• Title/Summary/Keyword: Transgenic pig

Search Result 130, Processing Time 0.047 seconds

In-Vitro Fertilization and Culture of Pig Oocytes Matured In-Vitro by Liquid Boar Sperm Stored at 4$^{\circ}C$

  • Kim, M. Y.;Y. J. Yi;Y. J. Chang;Park, C. S.
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.63-63
    • /
    • 2003
  • This study was carried out to investigate the effects of liquid boar sperm stored at 4$^{\circ}C$ on sperm motility, normal acrosome, and in-vitro fertilization and culture of pig oocytes matured in-vitro. The sperm-rich fraction (30~60 ml) of ejaculate was collected into an insulated vacuum bottle. Semen was slowly cooled to room temperature (20~23$^{\circ}C$) by 2 h after collection. Semen was transferred into 15 ml tubes, centrifuged at room temperature for 10 min at 800$\times$g, and the supernatant solution was poured off. The concentrated sperm was resuspended with 5 ml of lactose, egg yolk and N-acetyl-D-glucosamine (LEN) diluent to provide 1.0$\times$10$^{9}$ sperm/ml at room temperature. The resuspended semen was cooled in a refrigerator to 4$^{\circ}C$ and preserved for 5 days to examine sperm motility and normal acrosome. The medium used for oocyte maturation was modified tissue culture medium (TCM) 199. After about 22 h of culture, oocytes were cultured without cysteamine and hormones for 22 h at 38.5$^{\circ}C$, 5% $CO_2$ in air. Oocytes were inseminated with liquid boar sperm stored at 4$^{\circ}C$ for 2 days after collection. Oocytes were coincubated for 6 h in 500 ${mu}ell$ mTBM fertilization media with 0.2, 1, 5 and 10$\times$10$^{6}$ /ml sperm concentration, respectively. At 6 h after IVF, oocytes were transferred into 500 ${mu}ell$ Hepes-buffered NCSU-23 culture medium for further culture of 6, 48 and 144 h. There were significant differences in sperm motility and normal acrosome among preservation days and incubation times, respectively. The rates of sperm penetration and polyspermy were higher in 5 and 10$\times$10$^{6}$ sperm/ml than in 0.2 and 1$\times$10$^{6}$ sperm/ml. Male pronuclear formation was lower in 0.2$\times$10$^{6}$ sperm/ml than in 1, 5 and 10$\times$10$^{6}$ sperm/ml. Mean numbers of sperm in penetrated oocyte were highest in 10$\times$10$^{6}$ sperm/ml compared with other sperm concentrations. The rate of blastocysts from the cleaved oocytes (2~4 cell stage) was highest in 1$\times$10$^{6}$ sperm/ml compared with other sperm concentrations. In conclusion, we found out that liquid boar sperm stored at 4$^{\circ}C$ could be used for in-vitro fertilization of pig oocytes matured in-vitro. Also, we recommend 1$\times$10$^{6}$ ml sperm concentration for in-vitro fertilization of pig oocytes.

  • PDF

Progress in Transgenic Cloned Pig for Xenotransplantation

  • Park, Kwang-Wook
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.9-19
    • /
    • 2003
  • Pig organ is thought to be the most suitable nonhuman organ for xenotransplanstation. However, one of the major constraints to using pig organs for xenotransplantation is human natural antibody-mediated hyperacute rejection (HAR). Elimination of a(1,3) galactosyltransferase (GGTA1) from the pig is expected to be a solution to the problem of hyperacute rejection. Many efforts have made characterization of GGTA1 in structure and function, improvement in the technique of DNA transfection of somatic cells and advancement of the pig NT, a specific modification has been made to one copy of the GGTAl gene by Missouri group in 2002 To date because homozygousity of the genetic modification has been achieved in this gene, the role of gala(1,3) gal specific natural antibody in HAR and the efficacy of xenotransplantation in a nonhuman primate model will be addressed. Of other genes are found to be involved in rejection of pig donors by primates, the technology will be available to modify those genes so that rejection can be overcome.

  • PDF

Progress in Transgenic Cloned Pig for Xenotransplantation

  • Park, Kwang-Wook
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2003.10a
    • /
    • pp.9-19
    • /
    • 2003
  • Pig organ is thought to be the most suitable nonhuman organ for xenotransplanstation. However, one of the major constraints to using pig organs for xenotransplantation is human natural antibody-mediated hyperacute rejection (HAR). Elimination of a(1,3) galactosyltransferase (GGTA1) from the pig is expected to be a solution to the problem of hyperacute rejection. ry1any efforts have made characterization of GGTA1 in structure and function. improvement in the technique of DNA transfection of somatic cells and advancement of the pig NT, a specific modification has been made to one copy of the GGTA1 gene by Missouri group in 2002. To date because homozygousity of the genetic modification has been achieved in this gene, the role of gala(1,3) gal specific natural antibody in HAR and the efficacy of xenotransplantation in a nonhuman primate model will be addressed. If other genes are found to be involved in rejection of pig donors by primates, the technology will be available to modify those genes so that rejection can be overcome.

  • PDF

Study on Embryo Transfer System for Production of Transgenic Pigs

  • Na, Seungwon;Lee, Euncheol;Kim, Ghangyong;Min, Kyuhong;Yu, Youngkwang;Roy, Pantu Kumar;Fang, Xun;Hassan, Bahia Mohamed Salih;Yoon, Kiyoung;Shin, Sangtae;Cho, Jongki
    • Journal of Embryo Transfer
    • /
    • v.30 no.4
    • /
    • pp.345-350
    • /
    • 2015
  • In the last 10 years, porcine somatic cell nuclear transfer to generate transgenic pig has been performed tremendous development with introduction and knockout of many genes. However, efficiency of porcine somatic cell nuclear transfer is still low and embryo transfer (ET) is one of important step for production efficiency. In porcine ET for production of transgenic cloned pig, we can consider many of points to increase production rates. In respect of seasonality and weather, porcine ET usually is not performed in summer and winter. Cloned transgenic embryos must be transferred into reproductive tracts of recipients where embryos are located after natural fertilization with similar estrous cycle. If cloned embryos with 2~4 cell stage are transferred, they must be transferred into oviducts in periovulatory stage. Number and deposition sites of transferred cloned embryos are important. And we must compare the methods of ET between surgical and non-surgical ones in respect of production efficiency. Sow recipients after natural estrus is most preferred recipients however its cost is must be considered. Here we will review many of current studies about porcine embryo transfer to increase production efficiency of transgenic pigs and strategies for further studies.

The Production of Transgenic Mouse Harboring Mutated Pig Rhodopsin Gene (돌연변이가 야기된 돼지 로돕신 유전자를 지닌 형질전환동물의 생산)

  • 김도형;김진회;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.3
    • /
    • pp.191-197
    • /
    • 1994
  • It is generally known that mutations in any of several genes encoding photoreceptor-specific proteins have resulted in retinitis pigmentosa (RP), a disease characterized by losing photoreceptor function with progressive degeneration of photoreceptor cells and eventually leading to blindness. To study the procure and cure of photoreceptor degeneration, we produced transgenic mice. Transgene consisted of a 12.5kb genomic DNA fragment that contains mutated pig rhodopsin gene (Pro-347-Ser) including both the 5'-franking (4.0 kb) and the 3'-franking (2.9 kb) sequences. This gene was used for the production of transgenic mouse. The mutated rhodopsin DNA was microinjected into male pronuclei of fertilized mouse (C57BL /6]) embryos. We detected transgenic animals harboring mutated rhodopsin gene by PCR and Southern blot analysis. These transgenic mice showed stable transmission of microinjected rhodopsin gene into their offspring. Therefore these animals will provide a novel approach to study the mechanism of the photoreceptor degeneration and be provided as a disease model for the treatment of the blind in human.

  • PDF

Egfp Gene Expression in Nuclear Transfer-Derived Embryos and The Production of Cloned Transgenic Pig from Fetus-Derived Fibroblasts

  • Park, Mi-Rung;Cho, Seong-Keun;Lee, Eun-Kyeong;Joo, Young-Kuk;Park, Young-Ho;Kim, Hyung-Joo;Do, Chang-Hee;Kim, Jin-Hoi
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.216-216
    • /
    • 2004
  • Genetically modified domestic animals have many potential applications ranging from basic research to production agriculture. One of the goals in transgenic animal production schemes is to reliably predict the expression pattern of the foreign gene. Establishing a method to screen genetically modified embryos for transgene expression before transfer to surrogates may improve the likelihood of producing offspring with the desired expressing pattern. (omitted)

  • PDF

Gene Transfer into Pig and Goat Fetal Fibroblasts by Co-transfection of tPA Transgene and $Neo^r$ Gene

  • Kim, Bae-Chul;Han, Rong-Xun;Kim, Myung-Yoon;Shin, Young-Min;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.107-111
    • /
    • 2009
  • The transfection efficiency of a transgene into pig and goat fetal fibroblast cells (PFF and GFF, respectively) was tested using co-transfection of a human tissue-type plasminogen activator (tPA) transgene and neomycin-resistant ($Neo^r$) gene, followed by G418 selection. To initially test G418 resistance, GFF and PFF were incubated in culture medium containing different concentration of G418 for 2 weeks, and cell survival was monitored over time. Based on the obtained results, the concentrations chosen for G418 selection were 800 ug/ml and 200 ug/ml for GFF and PFF, respectively. For co-transfection experiments, the pBC1/tPA and $Neo^r$ vectors were co-transfected into GFF and PFF ($1{\times}10^6$ cells in each case) using the FuGENE6 transfection reagent, and resistant colonies were obtained following 14 days of G418 selection. We obtained 96 and 93 drug-resistant colonies of GFF and PFF, respectively, only 54 and 39 of which, respectively, continued proliferating after drug selection. PCR-based screening revealed that 23 out of 54 analyzed GFF colonies and 5 out of 39 analyzed PFF colonies contained insertion of the tPA gene. Thus, the experimentally determined transfection efficiencies for tPA gene co-transfection with the $Neo^r$ gene were 42.6% for GFF and 12.8% for PFF. These findings suggest that co-transfection of a transgene with the $Neo^r$ gene can aid in the successful integration of the transgene into fetal fibroblast cells.

Production and Breeding of Transgenic Cloned Pigs Expressing Human CD73

  • Lee, Seung-Chan;Lee, Haesun;Oh, Keon Bong;Hwang, In-Sul;Yang, Hyeon;Park, Mi-Ryung;Ock, Sun-A;Woo, Jae-Seok;Im, Gi-Sun;Hwang, Seongsoo
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.157-165
    • /
    • 2017
  • One of the reasons to causing blood coagulation in the tissue of xenografted organs was known to incompatibility of the blood coagulation and anti-coagulation regulatory system between TG pigs and primates. Thus, overexpression of human CD73 (hCD73) in the pig endothelial cells is considered as a method to reduce coagulopathy after pig-to-non-human-primate xenotransplantation. This study was performed to produce and breed transgenic pigs expressing hCD73 for the studies immune rejection responses and could provide a successful application of xenotransplantation. The transgenic cells were constructed an hCD73 expression vector under control porcine Icam2 promoter (pIcam2-hCD73) and established donor cell lines expressing hCD73. The numbers of transferred reconstructed embryos were $127{\pm}18.9$. The pregnancy and delivery rate of surrogates were 8/18 (44%) and 3/18 (16%). The total number of delivered cloned pigs were 10 (2 alive, 7 mummy, and 1 died after birth). Among them, three live hCD73-pigs were successfully delivered by Caesarean section, but one was dead after birth. The two hCD73 TG cloned pigs had normal reproductive ability. They mated with wild type (WT) MGH (Massachusetts General Hospital) female sows and produced totally 16 piglets. Among them, 5 piglets were identified as hCD73 TG pigs. In conclusion, we successfully generated the hCD73 transgenic cloned pigs and produced their litters by natural mating. It can be possible to use a mate for the production of multiple transgenic pigs such as ${\alpha}-1,3-galactosyltransferase$ knock-out /hCD46 for xenotransplantation.