• 제목/요약/키워드: Transgenic breeding

검색결과 133건 처리시간 0.026초

Molecular Breeding for Plant Disease Resistance : Prospects and Problems

  • Park, Hyo-Guen
    • The Plant Pathology Journal
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2001
  • The technique of plant transformation has started to show off its great power in the area of plant breeding by commercially successful introduction of transgenic varieties such as herbicide tolerant soybean and insect resistant corn in USA with an unimaginable speed. However, in contrast with the great success in the commercialization of herbicide tolerance and insect resistance, the transformation works on disease resistance has not yet reached the stage of full commercialization. This review surveys the current status of molecular breeding for plant disease resistance and their limits and problems. Some novel ideas and approaches in molecular breeding for disease resistance are introduced.

  • PDF

살충성 형질 전환 토마토 식물체의 분자 육종 (Molecular Breeding of Transgenic Tomato Plants Expressing the ${\delta}-Endotoxin$ Gene of Bacillus thuringiensis subsp. tenebrionis)

  • 임성렬
    • Applied Biological Chemistry
    • /
    • 제41권2호
    • /
    • pp.137-140
    • /
    • 1998
  • 딱정 벌레목 유충에 살충성을 나타내는 형질 전환 토마토 식물체를 4세대까지 분자 육종을 하였다. 분자 육종된 4세대 식물체에서 살충성 유전자인 B.t.t. 독소 유전자와 유전자가 발현되는 것을 확인하였다. 이 4세대 형질 전환 식물체는 독소 유전자 발현에 의해 딱정 벌레 유충에 살충성을 나타내고 있음이 확인 되었고, 4세대 형질 전환 식물체는 염색체는 2 배수체로 확인되어 정상적인 토마토 식물체임이 증명 되었다. 이 결과들은 형질 전환에 사용된 독소 유전자가 다음 세대로 안정되게 유전되고 있음을 나타내고 있다는 증거이다. 이러한 형질 전환된 식물체의 분자 육종은 농업에 있어서 현재의 일시적인 해충 방제에 비해 장기적인 해충 구제에 대한 새로운 방법의 가능성을 제시하고 있다고 하겠다.

  • PDF

Herbicide-resistant Transgenic Mongolian Bentgrass (Agrostis mongolica Roshev.) obtained by Agrobacterium-mediated Transformation

  • Vanjildorj, Enkhchimeg;Bae, Tae-Woong;Song, In-Ja;Kim, Kyung-Moon;Lim, Yong-Pyo;Lee, Hyo-Yeon
    • 한국육종학회지
    • /
    • 제40권2호
    • /
    • pp.128-135
    • /
    • 2008
  • Herbicide resistance is the most common trait being tested and thus herbicide?resistant genetically modified plants are now the most widely cultivated worldwide. Here we developed herbicide?resistant transgenic Agrostis mongolica Roshev. by employing an efficient Agrobacterium?mediated transformation procedure with 25.2% of transformation efficiency. The identification and employment of regenerable and reproducible type of callus was one of the most critical factors to ensure success in this study. PCR analysis confirmed that the bar transgene was integrated into the genome of transgenic plants. The expression of 35S?bar gene was confirmed by Northern blot analysis. The transgenic plants showed complete resistance to herbicide, indicating that the bar gene is functional in transgenic plants.

Functional Characterization of 5-Enopyruvylshikimate-3-Phosphate Synthase from Alkaliphilus metalliredigens in Transgenic Arabidopsis

  • Xing, Xiao-Juan;Tian, Yong-Sheng;Peng, Ri-He;Xu, Jing;Zhao, Wei;Yao, Quan-Hong;Sun, Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1421-1426
    • /
    • 2014
  • Although a large number of AroA enzymes (EPSPS: 5-enopyruvylshikimate-3-phosphate synthase) have been identified, cloned, and tested for glyphosate resistance, only two AroA variants, derived from Agrobacterium tumefaciens strain CP4 and Zea mays, have been utilized to produce the commercial glyphosate-resistant crops. Here, we have used a PCR-based twostep DNA synthesis method to synthesize an aroA gene ($aroA_{A.\;metalliredigens}$) from Alkaliphilus metalliredigens, encoding a new EPSPS. Furthermore, transgenic Arabidopsis with the new $aroA_{A.\;metalliredigens}$ gene was obtained to confirm the potential of the novel aroA gene in developing glyphosate-resistant crops.

Functional Characterization of aroA from Rhizobium leguminosarum with Significant Glyphosate Tolerance in Transgenic Arabidopsis

  • Han, Jing;Tian, Yong-Sheng;Xu, Jing;Wang, Li-Juan;Wang, Bo;Peng, Ri-He;Yao, Quan-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1162-1169
    • /
    • 2014
  • Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene ($aroA_{R.\;leguminosarum}$) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that $aroA_{R.\;leguminosarum}$ is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the $aroA_{R.\;leguminosarum}$ gene was obtained to prove its potential use in developing glyphosate-resistant crops.

Inheritance of Herbicide (glufosinate) Resistance in Transgenic Rice Plant through Anther Culture

  • Kang, Hyeon-Jung;Kim, Hyun-Soon;Nam, Jeong-Kwon;Lee, Young-Tae;Lee, Seung-Yeob;Kim, Chung-Kon
    • 한국육종학회지
    • /
    • 제40권3호
    • /
    • pp.211-214
    • /
    • 2008
  • Haploid system by anther culture allows the development of homozygous lines when doubled. The response of anther culture to Basta (glufosinate) resistance was investigated on transgenic plants (cv. Anjungbyeo) in order to identify inheritance of bar gene associated with Basta. Most of the regenerated transgenic plants were sterile, and only a few plants produced viable seeds ($A_1$) in the greenhouse. The bar gene was analysis by PCR in basta resistant transgenic plant ($TA_0$). The transgenic seeds ($A_1$) were significantly germinated in Basta solution compared with non-transformed seeds. As a result of anther culture, in regenerated haploid plants, segregation ratio was 1:1 in five of eight cross combinations. In diploid plants, segregation ratio was 1:1 in seven of eight cross combinations. Although there was some differences in the cross combinations, most of the combinations had 1:1 segregation ratio which supports the theory. The difference may be a result of the small sample size or the difference of anther culture response caused by genotypic difference. Hence, when many cross combinations were anther-cultured the results would support the theory.

Karyotype Analyses of a Rice Cultivar 'Nakdong' and its Four Genetically Modified Events by Conventional Staining and Fluorescence in situ Hybridization

  • Jeon, Eun Jin;Ryu, Kwang Bok;Kim, Hyun Hee
    • 한국육종학회지
    • /
    • 제43권4호
    • /
    • pp.252-259
    • /
    • 2011
  • Conventional staining and fluorescence in situ hybridization (FISH) karyotypes of the non-genetically modified (GM) parental rice line, 'Nakdong' (Oryza sativa L. japonica), and its four GM rice lines, LS28 (event LS30-32-20-1), Cry1Ac1 (event C7-1-9-1), and LS28 ${\times}$ Cry1Ac1 (events L/C1-1-3-1 and L/C1-3-1-1) were analyzed using 5S and 45S rDNAs as probes. Both parental and transgenic lines were diploids (2n=24) with one satellite chromosome pair. The lengths of the prometaphase chromosomes ranged from 1.50 to $6.30{\mu}m$. Four submetacentric and eight metacentric pairs comprised the karyotype of 'Nakdong' and its four GM lines. One pair of 5S rDNA signals was detected near the centromeric region of chromosome g in both the parental and transgenic lines. The 45S rDNA signals were detected on the secondary constrictions of the satellite chromosome pair in both the parental and transgenic lines. There was no significant difference in chromosome size, length, and composition between 'Nakdong' and its four GM lines. This research was conducted as a preliminary study for chromosomal detection of transgenes in GM rice lines and would be useful for their breeding programs.

Heterologous Expression and Characterization of a Laccase from Laccaria bicolor in Pichia pastoris and Arabidopsis thaliana

  • Wang, Bo;Yan, Ying;Xu, Jing;Fu, Xiaoyan;Han, Hongjuan;Gao, Jianjie;Li, Zhenjun;Wang, Lijuan;Tian, Yongsheng;Peng, Rihe;Yao, Quanhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2057-2063
    • /
    • 2018
  • Laccases can oxidize a variety of phenolic and non-phenolic substrates including synthetic dyes. In this research, a laccase gene Lcc9 from Laccaria bicolor was chemically synthesized and optimized to heterogeneous expression in Pichia pastoris and Arabidopsis thaliana. The properties of recombinant laccase expressed by P. pastoris were investigated. The laccase activity was optimal at 3.6 pH and $40^{\circ}C$. It exhibited $K_m$ and $V_{max}$ values of $0.565mmol\;l^{-1}$ and $1.51{\mu}mol\;l^{-1}\;min^{-1}$ for ABTS respectively. As compared with untransformed control plants, the laccase activity in crude extracts of transgenic lines exhibited a 5.4 to 12.4-fold increase. Both laccases expressed in transgenic P. pastoris or A. thaliana could decolorize crystal violet. These results indicated that L. bicolor laccase gene may be transgenically exploited in fungi or plants for dye decolorization.

Overexpression of a Chromatin Architecture-Controlling ATPG7 has Positive Effect on Yield Components in Transgenic Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jun Hun;Kim, Kook Jin;Lee, Dong Hee;Chung, Young-Soo
    • Plant Breeding and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.237-242
    • /
    • 2017
  • AT-hook proteins of plant have shown to be involved in growth and development through the modification of chromatin architecture to co-regulate transcription of genes. Recently, many genes encoding AT-hook protein have been identified and their involvement in senescence delay is investigated. In this study, soybean transgenic plants overexpressing chromatin architecture-controlling ATPG7 gene was produced by Agrobacterium-mediated transformation and investigated for the positive effect on the important agronomic traits mainly focusing on yield-related components. A total of 27 transgenic soybean plants were produced from about 400 explants. $T_1$ seeds were harvested from all transgenic plants. In the analysis of genomic DNAs from soybean transformants, ATPG7 and Bar fragments were amplified as expected, 975 bp and 408 bp in size, respectively. And also exact gene expression was confirmed by reverse transcriptase-PCR (RT-PCR) from transgenic line #6, #7 and #8. In a field evaluation of yield components of ATPG7 transgenic plants ($T_3$), higher plant height, more of pod number and greater average total seed weight were observed with statistical significance. The results of this study indicate that the introduction of ATPG7 gene in soybean may have the positive effect on yield components.

Genetic Modification of Coffee Plants

  • Shinjiro Ogita;Hirotaka Uefuji;Park, Yong-Eui;Tomoko Hatanaka;Mikihiro Ogawa;Yube Yamaguchi;Nozomu Koizumi;Hiroshi Sano
    • Journal of Plant Biotechnology
    • /
    • 제4권3호
    • /
    • pp.91-94
    • /
    • 2002
  • An efficient molecular breeding technique for coffee plants was developed. In order to produce transgenic coffee plants, we established a model transformation procedure via Agrobacterium method. We isolated a gene encoding a protein possessing 7-methylxanthine methyltransferase (theobromine synthase) activity, and it was designated as Coffea arabica 7-methylxanthine methyl transferase; CaMXMT. Using this clone, we produced transgenic coffee plants, in which the expression of CaMXMT is suppressed by double-stranded RNA interference (RNAi) andlor anti-sense methods. The expression pattern of CaMXMT was analyzed by reverse transcription-PCR method and we found that, in the transformed cell lines, the level of transcripts were obviously suppressed by RNAi. The endogenous level of caffeine in the transformed cells was dramatically reduced in comparison with non-transformed cells.