• 제목/요약/키워드: Transgenic Arabidopsis

검색결과 184건 처리시간 0.027초

PDAT1 genome editing reduces hydroxy fatty acid production in transgenic Arabidopsis

  • Mid-Eum Park;Hyun Uk Kim
    • BMB Reports
    • /
    • 제57권2호
    • /
    • pp.86-91
    • /
    • 2024
  • The fatty acids content of castor (Ricinus communis L.) seed oil is 80-90% ricinoleic acid, which is a hydroxy fatty acid (HFA). The structures and functional groups of HFAs are different from those of common fatty acids and are useful for various industrial applications. However, castor seeds contain the toxin ricin and an allergenic protein, which limit their cultivation. Accordingly, many researchers are conducting studies to enhance the production of HFAs in Arabidopsis thaliana, a model plant for oil crops. Oleate 12-hydroxylase from castor (RcFAH12), which synthesizes HFA (18:1-OH), was transformed into an Arabidopsis fae1 mutant, resulting in the CL37 line producing a maximum of 17% HFA content. In addition, castor phospholipid:diacylglycerol acyltransferase 1-2 (RcPDAT1-2), which catalyzes the production of triacylglycerol by transferring HFA from phosphatidylcholine to diacylglycerol, was transformed into the CL37 line to develop a P327 line that produces 25% HFA. In this study, we investigated changes in HFA content when endogenous Arabidopsis PDAT1 (AtPDAT1) of the P327 line was edited using the CRISPR/Cas9 technique. The successful mutation resulted in three independent lines with different mutation patterns, which were transmitted until the T4 generation. Fatty acid analysis of the seeds showed that HFA content decreased in all three mutant lines. These findings indicate that AtPDAT1 as well as RcPDAT1-2 in the P327 line are involved in transferring and increasing HFAs to triacylglycerol.

Transcriptional Activator Elements for Curtovirus C1 Expression Reside in the 3' Coding Region of ORF C1

  • Hur, Jingyung;Buckley, Kenneth J.;Lee, Sukchan;Davis, Keith R.
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.80-87
    • /
    • 2007
  • Beet curly top virus (BCTV) and Beet severe curly top virus (BSCTV), members of curtoviruses, encode seven open reading frames (ORFs) within a ~3 kb genome. One of these viral ORFs, C1, is known to play an important role in the early stage of viral infection in plants during initiation of viral DNA replication. We used promoter:: reporter (${\beta}$-glucuronidase) gene fusions in transgenic Arabidopsis to identify the putative promoter region of BCTV ORF C1. Unlike other geminiviruses, the intergenic region of BCTV was not sufficient to promote C1 expression in transgenic plants. When sequences extending into the coding region of C1 were tested, strong expression of the reporter protein was observed in vascular tissues of transgenic plants. This expression was not dependent on the presence of the intergenic regions or proximal 5' portions of the C1 coding region. Transgenic plants expressing a reporter gene under control of the putative complete C1 promoter were inoculated with virus to determine if any viral transcript affected C1 expression. Virus inoculated plants did not show any altered pattern or change in of reporter gene expression level. These results suggest that (1) important transcriptional activator elements for C1 expression reside in the 3' portion of C1 coding area itself, (2) C1 protein does not auto-regulate its own expression and (3) C1 expression of two curtoviruses is controlled differently compared to other geminiviruses.

GUS Expression Driven by Promoter of AtSAGT1 Gene Encoding a Salicylic Acid Glucosyltransferase 1 in Arabidopsis Plants

  • Sendon, Pamella Marie;Park, Jong-Beum;Park, Soon-Ki;Song, Jong Tae
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권2호
    • /
    • pp.83-87
    • /
    • 2013
  • AtSAGT1 encodes a salicylic acid (SA) glucosyltransferase enzyme that catalyzes the formation of SA glucoside and SA glucose ester. Here, the AtSAGT1 gene expression patterns were determined in AtSAGT1 promoter::GUS transgenic Arabidopsis plants. As a result, the factors regulating the induction of AtSAGT1 were identified as pathogen defense response, wound response, exogenous application of SA, and jasmonic acid treatment.

  • PDF

Characterization of F2 Progenies of Wound Minus Arabidopsis Mutant Crossed with Wild Type Plant

  • Park, Sanggyu
    • Journal of Applied Biological Chemistry
    • /
    • 제43권1호
    • /
    • pp.12-17
    • /
    • 2000
  • To understand the signal transduction pathway that leads to the activation of the wound-inducible proteinase inhibitor II (pin2) promoter. $F_2$ progenies of wound (-) mutant crossed with wild-type Arabidopsis plants were biochemically and genetically characterized. Wound (-) mutant was derived from transgenic Arabidopsis plants containing bacterial cytosine deaminase gene under the control of pin2 promoter. The cytosine deaminase assays indicated that wound (-) mutant is a dominant inhibitor of wound-inducibility as only 3 of the $20F_2$ progenies showed cytosine deaminase (CDase) activity, To construct a structural map of the wound (-) mutant chromosomal regions, cleaved, amplified polymorphic sequences (CAPS) markers that cover all Chromosomes were used. Chromosomal regions covered by three different CAPS markers could be candidates for further fine mapping of the location of the wound (-) mutation. g4026, RGA1 and ASA1 located at 84.9 on recombinant inbred (RI) map of chromosome I, at 1.75 on RI map of chromosome II, and 18.35 on RI map of chromosome V, respectively.

  • PDF

Expression of a Functional Type-I Chalcone Isomerase Gene Is Localized to the Infected Cells of Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Bae, Ju Hee;Lim, Jung Dae;Yu, Chang Yeon;An, Chung Sun
    • Molecules and Cells
    • /
    • 제23권3호
    • /
    • pp.405-409
    • /
    • 2007
  • A putative type-I chalcone isomerase (CHI) cDNA clone EuNOD-CHI was previously isolated from the root nodule of Elaeagnus umbellata [Kim et al. (2003)]. To see if it encodes a functional CHI, we ectopically overexpressed it in the Arabidopsis (Arabidopsis thaliana) transparent testa 5 (tt5) mutant, which is defective in naringenin production and has yellow seeds due to proanthocyanidin deficiency. Ectopic overexpression of EuNOD-CHI resulted in recovery of normal seed coat color. Naringenin produced by CHI from naringenin chalcone was detected in the transgenic lines like in the wild-type, whereas it was absent from the tt5 mutant. We conclude that EuNOD-CHI encodes a functional type-I CHI. In situ hybridization revealed that EuNOD-CHI expression is localized to the infected cells of the fixation zone in root nodules.

HRT-mediated Turnip crinkle virus Resistance in Arabidopsis

  • Park, Jeong-Mee;Daniel F. Klessig
    • The Plant Pathology Journal
    • /
    • 제19권1호
    • /
    • pp.19-23
    • /
    • 2003
  • Turnip crinkle vims (TCV) inoculation onto resistant Arabidopsis ecotype Dijon(Di-17) leads to a hypersensitive response (HR) on the inoculated leaves. A dominant gene, HRT, which confers an HR to TCV, has been cloned from Di-17 plants by map-based cloning. HRT is a LZ-NBS-LRR class resistance gene and it belongs to a small gene family that includes RPP8, which confers resistance to Peronospora parasitica Emco5. Outside of the LRR region, HRT and RPP8 proteins share 98% amino acid identity while their LRR regions are less conserved (87% identity). HRT-transformed Arabidopsis plants developed an HR but generally remained susceptible to TCV due to a dominant RRT allele, which is not compatible with resistance. However, several transgenic plants that over-expressed HRT much higher than Di-l7 showed micro-HR or no HR when inoculated with TCV and were resistant to infection. Both the HR and resistance are dependent on salicylic acid but independent of NPRI, ethylene, or jasmonic acid. Arabidopsis plants containing both TCV coat protein gene and HRT developed massive necrosis and death in seedlings, indicating that the TCV coat protein is an avirulence factor detected by the HRT.