DOI QR코드

DOI QR Code

HRT-mediated Turnip crinkle virus Resistance in Arabidopsis

  • Park, Jeong-Mee (Plant Genomics Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Daniel F. Klessig (Boyce Thompson Institute for Plant Research, Cornell University)
  • Published : 2003.02.01

Abstract

Turnip crinkle vims (TCV) inoculation onto resistant Arabidopsis ecotype Dijon(Di-17) leads to a hypersensitive response (HR) on the inoculated leaves. A dominant gene, HRT, which confers an HR to TCV, has been cloned from Di-17 plants by map-based cloning. HRT is a LZ-NBS-LRR class resistance gene and it belongs to a small gene family that includes RPP8, which confers resistance to Peronospora parasitica Emco5. Outside of the LRR region, HRT and RPP8 proteins share 98% amino acid identity while their LRR regions are less conserved (87% identity). HRT-transformed Arabidopsis plants developed an HR but generally remained susceptible to TCV due to a dominant RRT allele, which is not compatible with resistance. However, several transgenic plants that over-expressed HRT much higher than Di-l7 showed micro-HR or no HR when inoculated with TCV and were resistant to infection. Both the HR and resistance are dependent on salicylic acid but independent of NPRI, ethylene, or jasmonic acid. Arabidopsis plants containing both TCV coat protein gene and HRT developed massive necrosis and death in seedlings, indicating that the TCV coat protein is an avirulence factor detected by the HRT.

Keywords

References

  1. Bendahmane, A., Kanyuka, K. and Baulcombe, D. C. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781-791 https://doi.org/10.1105/tpc.11.5.781
  2. Bent, A. 1996. Plant disease resistance genes: Function meets structure. Plant Cell 8: 1757-1771 https://doi.org/10.1105/tpc.8.10.1757
  3. Botella, M. A., Parker, J. E., Frost, L. N., Bittner-Eddy, P. D.,Beynon, J. L., Daniels, M. J., Holub, E. B. and Jones, J. D. G. 1998. Three genes of the Arabidopsis RPPi complex resistance locus recognize distinct Peronospora parasitica aviruIenee determinants. Plant Cell 10:1847-1860 https://doi.org/10.1105/tpc.10.11.1847
  4. Callaway, A., Liu, W., Andrianov, V. Stenzler, L., Zhao, J., Wettlaufer, S., Jayakumar, P. and Howell, S. H. 1996. Characterization of cauliflower mosaic virus (CaMV) resistance in virus-resistant ecotypes of Arabidopsis. Mol. Plant-Microbe interact. 9:810-818 https://doi.org/10.1094/MPMI-9-0810
  5. Cao, H., Bowling, S. A., Gordon, A. S. and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6: 1583-1592 https://doi.org/10.1105/tpc.6.11.1583
  6. Carrington, J. C., Heaton, L. A., Zuidema, D., Hillman, B. I. and Morris, T. J. 1989. The genome structure of turnip crinkle virus. Virology 170:219-226 https://doi.org/10.1016/0042-6822(89)90369-3
  7. Cooley, M., Pathirana, S., Wu, H.-J., Kachroo, P. and Klessig, D. F. 2000. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663-676 https://doi.org/10.1105/tpc.12.5.663
  8. Delaney, T. P., Friedrich, L. and Ryals, J. A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 92:6602-6606 https://doi.org/10.1073/pnas.92.14.6602
  9. Dempsey, D. A., Pathirana, M. S., Wobbe, K. K. and Klessig, D. F. 1997. Identification of an Arabidopsis locus required for resistance to turnip crinkle virus. Plant J. 11:301- 311 https://doi.org/10.1046/j.1365-313X.1997.11020301.x
  10. Dempsey, D. A., Shah, J. and Klessig, D. F. 1999. Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci. 18:547-575 https://doi.org/10.1080/07352689991309397
  11. Dempsey, D. A., Wobbe, K. K. and Klessig, D. F. 1993. Resistance and susceptible responses ofArabidopsis thaliana to turnip crinkle virus. Phytopathology 83: 1021-1029 https://doi.org/10.1094/Phyto-83-1021
  12. Dixon, M. S., Hatzixanthis, K., lones, D. A., Harrison, K. and lones, J. D. G. 1998. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10:1915-1925 https://doi.org/10.1105/tpc.10.11.1915
  13. Ellingboe, A. H. 1980. Changing concepts in hostpathogen genetics. Annu. Rev. Phytopathol. 19: 125-143 https://doi.org/10.1146/annurev.py.19.090181.001013
  14. Ellis, J. G., Lawrence, G. J., Luck, J. E. and Dodds, P. N. 1999. Identification of regions in alleles of the flax rust resistance gene L that determines differences in gene-for-gene specificity. Plant Cell 11:495-506 https://doi.org/10.1105/tpc.11.3.495
  15. Gaffney, T., Friedrich, L., Vemooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261 :754-756 https://doi.org/10.1126/science.261.5122.754
  16. Glazebrook, J., Rogers, E. E. and Ausubel, F. M. 1996. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973-982
  17. Hacker, D. L., Petty, J. T. D., Wei, N. and Morris, T. J. 1992. Turnip crinkle virus genes required for RNA replication and virus movement. Virology 186: 18
  18. Jia, Y., Bryan, G., McAdams, S., Hershey, H., Farrall, L. and Valent, B. 1999. Rice blast fungus Magnaporthe grisea avirulence protein Avr-Pita binds to the leucine rich domain of the resistance protein Pi-tao In Molecular PlantMicrobe Interactions 9th International Congress, Amsterdam (Wageningen, The Netherlands: Ponsen and Looijen), 11 p
  19. Kachroo, P., Yoshioka, K., Shah, J., Dooner, H. and Klessig, D. F. 2000. Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPRI, ethylene, and jasmonate independent. Plant Cell 12:677-690 https://doi.org/10.1105/tpc.12.5.677
  20. Knoester, M., van Loon, L. C, Heuvel, J. V. D., Hennig,J., Bol, J. F. and Linthorst, H. 1. M. 1998. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA 95:1933-1937 https://doi.org/10.1073/pnas.95.4.1933
  21. Kobe, B. and Deisenhofer, J. 1995. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374: 183-186 https://doi.org/10.1038/374183a0
  22. Lee, S., Stenger, D. C. Bisaro, D. M. and Davis, K. R. 1994. Identification of loci in Arabidopsis that confer resistance to gemini virus infection. Plant J. 6:525-535 https://doi.org/10.1046/j.1365-313X.1994.6040525.x
  23. Li, X. H. and Simon, A. E. 1990. Symptom intensification on cru ciferous hosts by the virulent satellite RNA of turnip crinkle virus. Phytopathology 80:238-242 https://doi.org/10.1094/Phyto-80-238
  24. Martin, G. B. 1999. Functional analysis of plant disease resistance genes and their downstream effectors. Curro Opin. Plant Biol. 2:273-279 https://doi.org/10.1016/S1369-5266(99)80049-1
  25. McDowell, J. M., Dhandaydham, M., Long, T. A., Aarts, M. G. M., Goff, S., Holub, E. B. and Dangl, J. L. 1998. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861-1874 https://doi.org/10.1105/tpc.10.11.1861
  26. Milligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, J., Zabel, P. and Williamson, V. M. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307-1319 https://doi.org/10.1105/tpc.10.8.1307
  27. Murphy, A. M., Chivasa, S., Singh, D. P. and Carr, J. P. 1999. Salicylic acidinduced resistance to viruses and other pathogen: A parting of the ways? Trends Plant Sci. 4: 155-160 https://doi.org/10.1016/S1360-1385(99)01390-4
  28. Pamiske, M., Hammond-Kosack, K. E., Godstein, C, Thomas, C. M., Jones, D. A., Harrison, K., Wulff, B. B. H. and Jones, J. D. G. 1997. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf4/910cus of tomato. Cell 91:821-832 https://doi.org/10.1016/S0092-8674(00)80470-5
  29. Pieterse, C. M. J., van Wees, S. C. M., Hoffland, E., van Pelt, J. A. and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237 https://doi.org/10.1105/tpc.8.8.1225
  30. Pieterse, C. M. J., van Wees, S. C. M., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580 https://doi.org/10.1105/tpc.10.9.1571
  31. Ren, T., Qu, F. and Morris, T. J. 2000. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12:1917-1925 https://doi.org/10.1105/tpc.12.10.1917
  32. Rossi, M., Goggin, F. L., Milligan, S. B., Kaloshian, I., Ullman, D. E. and Williamson, V. M. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA 95:9750-9754 https://doi.org/10.1073/pnas.95.17.9750
  33. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819 https://doi.org/10.1105/tpc.8.10.1809
  34. Scofield, S. R., Tobias, C. M., Rathjen, J. P., Chang, J. H., Lavelle, D. T., Michelmore, R. W. and Staskawicz, B. J. 1996. Molecular basis of gene-far-gene specificity in bacterial speck disease of tomato. Science 274:2063-2065 https://doi.org/10.1126/science.274.5295.2063
  35. Simon, A. E., Li, X. H., Lew, J. E., Stange, R., Zhang, C, Polacco, M. and Carpenter, C. D. 1992. Susceptibility and resistance of Arabidopsis thaliana to turnip crinkle virus. Mol. Plant Microbe Interact. 5:496-503 https://doi.org/10.1094/MPMI-5-496
  36. Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y. and Martin, G. B. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: 2060-2063 https://doi.org/10.1126/science.274.5295.2060
  37. Thomas, C. M., Jones, D. A., Pamiske, M., Harrison, K., BalintKurti, P. J., Hatzixanthis, K. and Jones, J. D. G. 1997. Characterization of the tomato Cf4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209-2224 https://doi.org/10.1105/tpc.9.12.2209
  38. Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A. and Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111 https://doi.org/10.1073/pnas.95.25.15107
  39. Uknes, S., Winter, A. M., Delaney, T., Vernooij, B., Morse, A., Friedrich, L., Nye, G., Potter, S., Ward, E. and Ryals, J. 1993. Biological induction of systemic acquired resistance in Arabidopsis. Mol. Plant-Microbe Interact. 6:692-698 https://doi.org/10.1094/MPMI-6-692
  40. van der Voort, J. R., Kanyuka, K., van der Vossen, E., Bendahmane, A., Mooijman, P., Klein-Lankhorst, R., Stiekema, W., Bauicombe, D. and Bakker, J. 1999. Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species Solanum tuberosum subsp. andigena CPC 1673 into cultivated potato. Mol. Plant-Microbe Interact. 12:197-206 https://doi.org/10.1094/MPMI.1999.12.3.197
  41. Wang, G., Ruan, D., Song, W., Sideris, S., Chen, L., Pi, L., Zhang, S., Zhang, Z., Fauquet, C., Gaut, B. S., Whalen, M. C. and Ronald, P. C. 1998. Xa2ID encodes a receptor-like molecule with a leucine-rich repeat domain that determines racespecific recognition and is subject to adaptive evolution. Plant Cell 10:765-779 https://doi.org/10.1105/tpc.10.5.765
  42. Wang, J. and Simon, A. E. 1999. Symptom attenuation by a satellite RNA in vivo is dependent on reduced levels of virus coat protein. Virology 259:234-245 https://doi.org/10.1006/viro.1999.9781
  43. White, K. A., Skuzeski, J. M., Li, W. -Z. and Morris, T. J. 1995. Immunodetection, Expression strategy and complementation of turnip crinkle virus p28 and p88 replication components. Virology 211:525-534 https://doi.org/10.1006/viro.1995.1434
  44. Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C. and Baker, B. 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-l receptor. Cell 23: 1101-1115
  45. Yang, Y., Shah, J. and Klessig, D. 1997. Signal perception and transduction in plant defense responses. Genes Dev. 11:1621-1639 https://doi.org/10.1101/gad.11.13.1621
  46. Zhao, Y., DelGrosso, L., Yigit, E., Dempsey, D. A., Klessig, D. F. and Wobbe, K. K. 2000. The amino terminus of the coat protein of turnip crinkle virus is the avr factor recognized by resistant Arabidopsis. Mol. Plant-Microbe Interact. 13:1015-1018 https://doi.org/10.1094/MPMI.2000.13.9.1015