• Title/Summary/Keyword: Transforming growth factor-${\beta}$

Search Result 441, Processing Time 0.047 seconds

Early Growth Response Protein-1 Involves in Transforming Growth factor-β1 Induced Epithelial-Mesenchymal Transition and Inhibits Migration of Non-Small-Cell Lung Cancer Cells

  • Shan, Li-Na;Song, Yong-Gui;Su, Dan;Liu, Ya-Li;Shi, Xian-Bao;Lu, Si-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4137-4142
    • /
    • 2015
  • The zinc finger transcription factor EGR 1 has a role in controlling synaptic plasticity, wound repair, female reproductive capacity, inflammation, growth control, apoptosis and tumor progression. Recent studies mainly focused on its role in growth control and apoptosis, however, little is known about its role in epithelial-mesenchymal transition (EMT). Here, we aim to explore whether EGR 1 is involved in TGF-${\beta}1$-induced EMT in non-smallcell lung cancer cells. Transforming growth factor (TGF)-${\beta}1$ was utilized to induce EMT in this study. Western blotting, RT-PCR, and transwell chambers were used to identify phenotype changes. Western blotting was also used to observe changes of the expression of EGR 1. The lentivirus-mediated EGR 1 vector was used to increase EGR 1 expression. We investigated the change of migration to evaluate the effect of EGR 1 on non-small-cell lung cancer cells migration by transwell chambers. After stimulating with TGF-${\beta}1$, almost all A549 cells and Luca 1 cells (Non-small-cell lung cancer primary cells) changed to mesenchymal phenotype and acquired more migration capabilities. These cells also had lower EGR 1 protein expression. Overexpression of EGR 1 gene with EGR 1 vector could decrease tumor cell migration capabilities significantly after adding TGF-${\beta}1$. These data s howed an important role of EGR 1 in the EMT of non-small-cell lung cancer cells, as well as migration.

Downregulation of SGK1 Expression is Critical for TGF-β-induced Apoptosis in Mouse Hepatocytes Cells (TGF-β에 의한 간세포의 세포사멸 과정에서 SGK1 발현 감소의 중요성)

  • Nam, In-Koo;Yoo, Jiyun
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1500-1506
    • /
    • 2012
  • Transforming growth factor (TGF)-${\beta}$-dependent apoptosis is important in the elimination of damaged or abnormal cells from normal tissues, especially in liver, in vivo. To investigate which gene expressions are critical for TGF-${\beta}$-induced apoptosis in hepatocytes, gene expression profiling experiments were performed with TGF-${\beta}$-treated and non-treated mouse hepatocytes AML12 cells. Findings showed that serum and glucocorticoid-inducible protein kinase1 (SGK1) expression is markedly downregulated during TGF-${\beta}$-induced apoptosis. Findings confirmed that expression of SGK1 protein, as well as mRNA, is also markedly decreased with TGF-${\beta}$ treatment. Infection of adenoviral vector encoding constitutively active SGK1 (CA-SGK1), but not kinase dead SGK1 (KD-SGK1), attenuated TGF-${\beta}$-induced apoptosis. All of these results suggest that downregulation of SGK1 expression is critical for TGF-${\beta}$-induced apoptosis in AML12 cells.

Expression of Growth Differentiation Factor-9 in the Mouse Ovaries at Different Developmental Stages (생쥐 난소의 발생단계에 따른 Growth Differentiation Factor-9의 유전자 발현)

  • 윤세진;이경아;고정재;차광열
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.95-100
    • /
    • 1999
  • Growth differentiation factor-9 (GDF-9) is a member of the transforming growth factor $\beta$ (TGF-$\beta$) superfamily. It has been known that GDF-9 is a growth factor having a crucial role in normal folliculogenesis and its expression is oocyte-specific. The present study was aimed to elucidate the expression of GDF-9 mRNA in the mouse primordial follicles as well as in the other developmental stages. The semiquantitative analysis of GDF-9 mRNA expression was conducted. Total RNA was extracted from the ICR mice ovaries at gestational day 19, postnatal day 1, day 10, day 21, and day 28, and RT-PCR was performed to measure GDF-9 and $\beta$-actin mRNA levels. Level of GDF-9 mRNA were normalized against the level of $\beta$-actin mRNA, and compared among different stages. GDF-9 mRNA was detected in all samples including the fetal ovaries that mainly consists of primordial follicles. The highest level of mRNA was observed in ovaries obtained at day 10 that mainly consists of growing follicles. The present result suggests that GDF-9 may play an important role in the early stage of folliculogenesis.

  • PDF

Red ginseng extract protects against carbon tetrachloride-induced liver fibrosis

  • Ki, Sung Hwan;Yang, Ji Hye;Ku, Sae Kwang;Kim, Sang Chan;Kim, Young Woo;Cho, Il Je
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Korean red ginseng, the processed root of Panax ginseng Meyer, has been frequently used for various therapeutic purposes in oriental medicine. The present study investigated the possible effect of Korean red ginseng extract (RGE) for the treatment of liver fibrosis in mice injected with carbon tetrachloride ($CCl_4$) for 4 wk. Liver injuries were assessed by blood biochemistry and histopathology in mice treated with $CCl_4$ alone or $CCl_4$+ RGE (30, 100, and 300 mg/kg). Concomitant treatment with RGE and $CCl_4$ (three times/wk for 4 wk) effectively inhibited liver fibrosis as evidenced by decreases in plasma alanine and aspartate aminotransferases, as well as by the percentages of degenerative regions, numbers of degenerative hepatocytes, and collagen accumulation in hepatic parenchyma. Treatment with $CCl_4$ for 4 wk increased mRNA levels of transforming growth factor ${\beta}1$ and plasminogen activator inhibitor 1 in fibrogenic liver, whereas RGE (30, 100, and 300 mg/kg) significantly blocked the induction of fibrogenic genes by $CCl_4$. Similarly, RGE also prevented transforming growth factor ${\beta}1$-mediated induction of fibrogenic genes in human hepatic stellate cell lines. More importantly, RGE markedly reduced the number of ${\alpha}$-smooth muscle actin-positive cells in liver tissue. This study implies that RGE efficaciously protects against the liver fibrosis induced by chronic $CCl_4$ treatment, and may therefore have potential to treat liver disease.

Transforming growth factor-beta and liver injury in an arginine vasopressin-induced pregnant rat model

  • Govender, Nalini;Ramdin, Sapna;Reddy, Rebecca;Naicker, Thajasvarie
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.124-131
    • /
    • 2021
  • Objective: Approximately 30% of preeclamptic pregnancies exhibit abnormal liver function tests. We assessed liver injury-associated enzyme levels and circulating transforming growth factor beta (TGF-β) levels in an arginine vasopressin (AVP)-induced pregnant Sprague-Dawley rat model. Methods: Pregnant and non-pregnant Sprague-Dawley rats (n=24) received AVP (150 ng/hr) subcutaneously via mini-osmotic pumps for 18 days. Blood pressure was measured, urine samples were collected, and all animals were euthanized via isoflurane. Blood was collected to measure circulating levels of TGF-β1-3 isomers and liver injury enzymes in pregnant AVP (PAVP), pregnant saline (PS), non-pregnant AVP (NAVP), and non-pregnant saline (NS) rats. Results: The PAVP group showed significantly higher systolic and diastolic blood pressure than both saline-treated groups. The weight per pup was significantly lower in the AVP-treated group than in the saline group (p<0.05). Circulating TGF-β1-3 isomer levels were significantly higher in the PAVP rats than in the NS rats. However, similar TGF-β1 and TGF-β3 levels were noted in the PS and PAVP rats, while TGF-β2 levels were significantly higher in the PAVP rats. Circulating liver-type arginase-1 and 5'-nucleotidase levels were higher in the PAVP rats than in the saline group. Conclusion: This is the first study to demonstrate higher levels of TGF-β2, arginase, and 5'-nucleotidase activity in PAVP than in PS rats. AVP may cause vasoconstriction and increase peripheral resistance and blood pressure, thereby elevating TGF-β and inducing the preeclampsia-associated inflammatory response. Future studies should explore the mechanisms through which AVP dysregulates liver injury enzymes and TGF-β in pregnant rats.

In Vitro Bioassay for Transforming Growth Factor-$\beta$ Using XTT Method

  • Kim, Mi-Sung;Ahn, Seong-Min;Moon, Aree
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.903-909
    • /
    • 2002
  • Research in the cytokine field has grown exponentially in recent years, and the validity of such studies relies heavily on the appropriate measurement of levels of cytokines in various biological samples. Transforming growth factor (TGF)-$\beta$, a hormonally active polypeptide found in normal and transformed tissue, is a potent regulator of cell growth and differentiation. The most widely used bioassay for TGF-$\beta$ is the inhibition of the proliferation of mink lung epithelial cells. Though detection of [$^3$H]thymidine incorporation is more sensitive than the MTT assay, it presents some disadvantages due to the safety and disposal problems associated with radioisotopes. In this study, we attempted to ascertain the experimental conditions which could be used for measuring the in vitro biological activity of TGF-$\beta$ in a safer and more sensitive way compared with the currently available methods. We compared the commonly used method, the MTT assay, to the XTT assay using different parameters including cell number, incubation time and the wave length used for detecting the product. We examined the anti-proliferative activities of TGF-$\beta$ in three different cell lines: Mv-1-Lu mink lung epithelial cells, MCF10A human breast epithelial cells and H-ras-transformed MCF10A cells. Herein, we present an experimental protocol which provides the most sensitive method of quantifying the biological activity of TGF-$\beta$, with a detection limit of as low as 10 pg/ml: Mv-1-Lu or H-ras MCF10A cells ($1{\times}10^5/well$) were incubated with TGF-$\beta$ at $37^{\circ}C$ in a humidified $CO_2$ incubator for 24 hr followed by XTT treatment and determination of absorbance at 450 or 490 nm. Our results may contribute to the establishment of an in vitro bioassay system, which could be used for the satisfactory quantitation of TGF-$\beta$.

Effects of Transforming Growth Factor Beta on Cytoskeleton Structure and Extracellular Matrix in Mv1Lu Mink Epithelial Cells

  • Choi, Eui-Yul;Lee, Kyung-Mee;Chung, So-Young;Nham, Sang-Uk;Yie, Se-Won;Chun, Gie-Taek;Kim, Pyeung-Hyun
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.405-410
    • /
    • 1996
  • Previous studies have shown that transforming growth factor beta ($TGF-{\beta}$) is a potent regulator of cell growth and differentiation. To study the effects of $TGF-{\beta}$ on cell morphology and cytoskeleton reorganization, we conducted a survey using Mv1Lu mink lung epithelial cells with antibodies to cytoskeletal proteins and an extracellular matrix protein. While the untreated cells showed a cuboidal shape of typical epithelia, the Mv1Lu cells displayed a drastic shape change in the presence of $TGF-{\beta}$. This alteration was most prominent when near-confluent cells were treated with $TGF-{\beta}$. Since the morphology alteration is known to be accompanied by the reorganization of cytoskeletal proteins in other cell types, we investigated the intracellular distribution of the three major cytoskeletal structures: microfilaments, microtubules, and intermediate filaments. In the microfilament system, $TGF-{\beta}$ induced new stress fiber formation, which was caused primarily by the polymerization of cytoplasmic G-actin. However, $TGF-{\beta}$ appeared not to induce any significant changes in microtubular structures and vimentin filaments as determined by indirect fluorescence microscopy. Finally we confirmed the rapid accumulation of fibronectin by immunoblot analysis and chased the protein locations by immunofluorescence microscopy.

  • PDF

Expression of angiogenin, TGF-${\beta}$, VEGF, APEX and TNF-${\alpha}$ in oral squamous cell carcinoma

  • Lee, Ho-Sun;Kim, Kyoung-Won;Kim, Wun-Jae
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.1
    • /
    • pp.8-18
    • /
    • 2006
  • Purpose: The purpose of this study was to verify that the expressions of angiogenin, transforming growth factor-beta(TGF-${\beta}$), vascular endothelial growth factor(VEGF), human apurinic/apyrimidinic endonuclease(APEX) and tumor necrosis factor-alpha(TNF-${\alpha}$) were associated with the tumorigenesis of the oral squamous cell carcinoma(OSCC). Materials and Methods: Fifty-one samples of OSCC and fifteen normal oral mucosae were obtained to analyze the expression levels of above five factors. mRNA expressions were quantified by the quantitative competitive PCR(QC-PCR) method. After 2% agarose gel electrophoresis stained with ethidium bromide, the concentration of mRNA was calculated by a digital image analysis system. The expression levels of angiogenin, TGF-${\beta}$, VEGF, APEX and TNF-${\alpha}$ were compared by unpaired Student's t-tests between cancer and normal tissues. We analyzed statistically to find the cut-off values that would be useful as diagnostic markers, and the linear regression analysis between every two factors of these five factors by SAS system. Results: All of these five factors (angiogenin: P<0.0037, TGF-${\beta}$: P<0.0001, VEGF: P<0.0102, APEX: P<0.0023, TNF-${\alpha}$: P<0.0074) were significantly correlated with OSCC. In the analysis to find the cut-off values for the diagnosis, we could not find any value that had a reasonable sensitivity and specificity. In the linear regression analysis, there were correlations between angiogenin and TNF-${\alpha}$, TGF-${\beta}$ and VEGF, TGF-${\beta}$ and APEX, TGF-${\beta}$ and TNF-${\alpha}$, VEGF and APEX, VEGF and TNF-${\alpha}$, APEX and TNF-${\alpha}$. Conclusion: Our results suggest that not only angiogenin, TGF-${\beta}$, VEGF, APEX and TNF-${\alpha}$ are significantly associated with the tumorigenesis, but also the close relationship between these factors might enhance the tumorigenesis of OSCC. We can not find clinical availability for diagnosis.

Role of Reactive Oxygen Species in Transforming Growth Factor-β1-inuduced Fibronectin Secretion and α-Smooth Muscle Actin Expression in Human Lung Fibroblasts (사람 폐 섬유아세포의 전환성장인자-β1에 의한 fibronectin 분비와 α-smooth muscle actin 표현에 있어서 활성산소족의 역할)

  • Ha, Hunjoo;Yu, Mi-Ra;Uh, Soo-taek;Park, Choon Sik;Lee, Hi Bahl
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.3
    • /
    • pp.267-276
    • /
    • 2005
  • Background : The transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) plays a key role in lung fibrosis. However, the molecular mechanisms involved in $TGF-{\beta}1$-induced lung fibrosis are unclear. $TGF-{\beta}1$ is the key inducer of myofibroblast transdifferentiation via de novo synthesis of ${\alpha}-smooth$ muscle actin (${\alpha}-SMA$). Since $TGF-{\beta}1$ signals through reactive oxygen species (ROS) and ROS have been shown to induce accumulation of extracellular matrix (ECM) in various tissues, this study examined if ROS play a role in $TGF-{\beta}1$-induced fibronectin secretion and ${\alpha}-SMA$ expression in human lung fibroblasts, MRC-5 cells. Methods : Growth arrested and synchronized MRC-5 cells were stimulated with $TGF-{\beta}1$ (0.2-10 ng/ml) in the presence or absence of N-acetylcysteine (NAC) or diphenyleneiodonium (DPI) for up to 96 hours. Dichlorofluorescein (DCF)-sensitive cellular ROS were measured by FACScan and secreted fibronectin and cellular ${\alpha}-SMA$ by Western blot analysis. Results : $TGF-{\beta}1$ increased the level of fibronectin secretion and ${\alpha}-SMA$ expression in MRC-5 cells in a dosedependent manner. Both NAC (20 and 30 mM) and DPI (1 and $5{\mu}M$) significantly inhibited $TGF-{\beta}1$-induced fibronectin and ${\alpha}-SMA$ upregulation. The $TGF-{\beta}1$-induced cellular ROS level was also significantly reduced by NAC and DPI. Conclusions : The results suggest that NADPH oxidase-dependent ROS play an important role in $TGF-{\beta}1$-induced fibronectin secretion and ${\alpha}-SMA$ expression in MRC-5 cells, which leads to myofibroblast transdifferentiation and progressive lung fibrosis.