• 제목/요약/키워드: Transforming growth factor-${\beta}$

검색결과 444건 처리시간 0.03초

The Role of Tripartite Motif Family Proteins in TGF-β Signaling Pathway and Cancer

  • Lee, Ho-Jae
    • Journal of Cancer Prevention
    • /
    • 제23권4호
    • /
    • pp.162-169
    • /
    • 2018
  • $TGF-{\beta}$ signaling plays a tumor suppressive role in normal and premalignant cells but promotes tumor progression during the late stages of tumor development. The $TGF-{\beta}$ signaling pathway is tightly regulated at various levels, including transcriptional and post-translational mechanisms. Ubiquitination of signaling components, such as receptors and Smad proteins is one of the key regulatory mechanisms of $TGF-{\beta}$ signaling. Tripartite motif (TRIM) family of proteins is a highly conserved group of E3 ubiquitin ligase proteins that have been implicated in a variety of cellular functions, including cell growth, differentiation, immune response, and carcinogenesis. Recent emerging studies have shown that some TRIM family proteins function as important regulators in tumor initiation and progression. This review summarizes current knowledge of TRIM family proteins regulating the $TGF-{\beta}$ signaling pathway with relevance to cancer.

성대 반흔에 대한 기초연구의 최신 경향 (Trend of Basic Research for Vocal Fold Scar)

  • 이병주
    • 대한후두음성언어의학회지
    • /
    • 제23권1호
    • /
    • pp.28-32
    • /
    • 2012
  • Vocal fold scar disrupts structure of lamina propria and causes significant change in vocal fold tissue biomechanics, resulting in a range of voice problems that often significantly compromise patient quality of life. Although several therapeutic management have been offered in an attempt to improve vocal fold scar, the ideal treatment has not yet been found. Recently, several tissue engineering technique for vocal fold scar using growth factors, several cells, and scaffolds have been described in tissue culture and animal models. Several growth factors such as hepatocyte growth factor, basic fibroblast growth factor, and transforming growth factor beta 3 for therapy and prevention of vocal fold scar have been studied. Cell types to regenerate vocal folds in scarring tissue have been introduced autologous or scarred vocal fold fibroblast and adult mesenchymal stem cells. Decellularized organ matrix and several hyaluronic acid materials have used as scaffolds for vocal fold scar.

  • PDF

Tensile stress regulation of NGF and NT3 in human dermal fibroblast

  • 김미나;홍정우;노민수;나용주;신현정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1585-1587
    • /
    • 2008
  • Fibroblast is constantly subjected to mechanical loads in connective tissues where mechanical signals are converted to intercellular biochemical events. The aim of this study is to understand the effects of tensile stress on the neurotrophin (NT) and transforming growth factor (TGF) expression of fibroblast in vitro. Nerve growth factor (NGF) stimulates fibroblast migration, and TGF is related to tissue repair. In this study, at the uniaxial stretch of 10% strain and frequency of 0.5 Hz, different resting times of 0, 20, and 60 min are placed in between 10 min stimulations periods. Results show increase in NGF mRNA levels and a substantial decrease in NT3 mRNA after 1 hr of stimulation, indicating that the tensile stress may regulate NGF and NT3, key factors for the neurocosmetic applications. The mRNA level for TGF-${\alpha}$ and TGF-${\beta}2$ had increased up to two-folds after 1 hr of stimulation, showing that the tensile stress may control TGF, an important part of wound healing.

  • PDF

Lactobacillus plantarum 발효 식물추출물질(MBN)의 in vitro 및 in vivo 발모 효과 (In vitro and In vivo Hair Growth Promotion Effects of Lactobacillus plantarum-Fermented Plant Extracts (MBN))

  • 주성수
    • 한국식품과학회지
    • /
    • 제43권3호
    • /
    • pp.381-386
    • /
    • 2011
  • 실험물질은 두피건강 및 발모에 유용한 소재를 혼합하여 열수 추출한 후 유산균에 발효시킨 2차 발효물질로서 고기능성이 예상되는 물질이다. C57BL/6 마우스의 등을 제모하고 실험물질을 처리하였을 때 암 수 모두에서 양성대조군인 minoxidil과 비교하였을 때 동등이상의 우수한 발모효과가 있음을 확인하였다. 특히 수컷의 경우 200 mg/kg 이하의 농도에서 우수한 효과가 관찰되었고 암컷에서는 고용량인 500 mg/kg까지 현저한 발모효과가 관찰되어 성별 처치 용량에 차이가 있는 것으로 사료되었다. 또한 양성대조군 minoxidil이 신속한 발모효과를 보이는 반면 털의 긁기가 감소하는 현상이 관찰되었으나 실험물질을 처리한 군에서는 제모전과 동등이상의 굵기를 유지하였다. 이러한 발모효과를 확인하기위해 모발성장관련 유전자 발현을 분석한 결과 실험물질이 KGF, VEGF 등의 모발성장촉진인자의 발현을 증가시키는 반면 탈모를 유도하는 $TGF{\beta}1$의 발현에는 반응을 하지 않아 유용한 발모제제로서의 가능성이 입증되었다. 더불어 실험물질에 의한 NO 분비가 두피의 혈류개선을 유도하여 탈모억제효능을 나타낼 것으로 사료되어 발효생약추출물인 MBN이 모발성장 및 탈모예방제제로의 개발이 가능 할 것으로 기대된다.

Comparisons of Renoprotective Activities between White Ginseng Radix and Rootlet in Spontaneously Hypertensive Rats with Diabetes

  • Chung, Sung-Hyun;Ko, Sung-Kwon;Park, Se-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권1호
    • /
    • pp.57-61
    • /
    • 2002
  • The renoprotective activities of white ginseng radix and rootlet were compared in spontaneously hypertensive rat (SHR) with diabetes. During oral administration of white ginseng radix (Ginseng Radix Alba, GRA) and white ginseng rootlet (Ginseng Radix Palva, GRP) for four weeks, arterial blood pressure and blood glucose levels were determined at every 10 days. In both GRA- and GRP-treatment groups, arterial blood pressures started to go down after 10 days of administration and maintained throughout the study period. After four weeks administrations of GRA and GRP, diastolic blood pressures were significantly decreased with 17% and 9%, respectively. GRA treatment also decreased blood glucose levels after 10 days of administration when compared with diabetic SHR group. At the end of the experiment, serum creatinine (Scr) and blood urea nitrogen (BUN) were not significantly different between the groups, except 62% higher value of BUN in diabetic SHR group when compared with SHR group. In the diabetic SHR group, the excretion of urinary albumin was increased significantly when compared with SHR. The level of urinary albumin in GRA treated group was markedly reduced when compared with diabetic SHR group $(67.8{\pm}4.7\;vs.\;131.3{\pm}13.5\;mg/24\;h).$ To examine the effects of ginseng radices on an overt diabetic nephropathy, index of kidney hypertrophy and transforming growth $factor-{\beta}1\;(TGF-{\beta}1)$ protein levels were evaluated. The glomerular and tubular cells stained positive for $TGF-{\beta}1$ seemed to be more abundant in diabetic SHR than in those with SHR, and GRA treated rats showed somewhat less $TGF-{\beta}1$ protein in glomerular and tubular cells when compared with diabetic SHR. Our results suggest that GRA might be a useful antihypertensive and antidiabetic agent with renoprotective effect.

Transforming Growth Factor-β-Induced RBFOX3 Inhibition Promotes Epithelial-Mesenchymal Transition of Lung Cancer Cells

  • Kim, Yong-Eun;Kim, Jong Ok;Park, Ki-Sun;Won, Minho;Kim, Kyoon Eon;Kim, Kee K.
    • Molecules and Cells
    • /
    • 제39권8호
    • /
    • pp.625-630
    • /
    • 2016
  • The RNA-binding protein Rbfox3 is a well-known splicing regulator that is used as a marker for post-mitotic neurons in various vertebrate species. Although recent studies indicate a variable expression of Rbfox3 in non-neuronal tissues, including lung tissue, its cellular function in lung cancer remains largely unknown. Here, we report that the number of RBFOX3-positive cells in tumorous lung tissue is lower than that in normal lung tissue. As the transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway is important in cancer progression, we investigated its role in RBFOX3 expression in A549 lung adenocarcinoma cells. TGF-${\beta}1$ treatment inhibited RBFOX3 expression at the transcriptional level. Further, RBFOX3 depletion led to a change in the expression levels of a subset of proteins related to epithelial-mesenchymal transition (EMT), such as E-cadherin and Claudin-1, during TGF-${\beta}1$-induced EMT. In immunofluorescence microscopic analysis, mesenchymal morphology was more prominent in RBFOX3-depleted cells than in control cells. These findings show that TGF-${\beta}$-induced RBFOX3 inhibition plays an important role in EMT and propose a novel role for RBFOX3 in cancer progression.

4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

  • Kim, Sang-Cheol;Kang, Jung-Il;Hyun, Jin-Won;Kang, Ji-Hoon;Koh, Young-Sang;Kim, Young-Heui;Kim, Ki-Ho;Ko, Ji-Hee;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.417-426
    • /
    • 2017
  • 4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-${\beta}$ (TGF-${\beta}$) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-${\beta}$ signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-${\beta}$-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-${\beta}1$-induced G1/G0 phase arrest and TGF-${\beta}1$-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-${\beta}1$-induced canonical pathway. We observed that ERK phosphorylation by TGF-${\beta}1$ was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-${\beta}1$-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-${\beta}1$-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-${\beta}1$-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-${\beta}1$-induced cell cycle arrest.

혈소판 농축 섬유소가 골모세포 증식과 분화에 미치는 영향 (The Effects of Platelet-Rich Fibrin on Osteoblast Proliferation and Differentiation: Effects of Platelet-Rich Fibrin on Osteoblasts)

  • 정해수;배현숙;홍기석
    • 치위생과학회지
    • /
    • 제13권2호
    • /
    • pp.158-164
    • /
    • 2013
  • 임플란트 식립 시 가장 빈번하게 맞게 되는 문제점으로 임플란트 식립 부위에서의 불충분한 골량과 해부학적 구조에 의한 접근성의 문제를 들 수 있다. 일반적으로 성장 인자들은 치유 과정이나 조직 형성에 있어서 가장 기본적인 필수 요소로 인정되고 있다. 이러한 이유로 골 이식 재료의 효과를 증진시키기 위한 성장 인자들이 최근에 주목을 받고 있다. 혈소판 내 granules에는 높은 농도의 다양한 성장 인자들이 포함되어 있다. 특히, platelet-rich fibrin (PRF)는 2세대 혈소판 농축 인자로 항응고제가 들어있지 않은 상태로 얻을 수가 있고, 혈소판과 많은 성장 인자들이 풍부한 섬유소 막을 포함하고 있다. 이번 연구의 목적은 in vitro 상에서 골아 세포에 대한 PRF의 영향을 알아보고자 하였다. 특히 치유와 재생에 연관된 주요 기능으로써 증식과 분화에 대한 영향을 조사하고자 하였다. 이를 위해서, PRF 내에서 방출되는 성장 인자(platelet-derived growth factor subunit B와 transforming growth factor-${\beta}1$)의 농도, 세포의 생존능력, alkaline phosphatase (ALP) activity, type 1 collagen 합성, 골아 세포의 분화 지표로써 ALP와 Runx2의 발현 정도와 골 기질 단백질로써 type 1 collagen의 발현 정도에 대해서 조사하였다. 이 실험을 통하여 PRF는 치유 시 필요한 타당한 기간 동안에 충분히 자가 성장 인자의 방출을 유지하고 있음을 알 수 있었고, 골아 세포의 증식과 분화에 대해서 긍정적인 효과가 있음을 보여 주였다. 제한적인 실험이지만, 골재생을 위한 PRF의 사용은 골 치유와 골 개조에 있어서 증진 효과를 가져다줄 수 있는 촉망되는 방법 중 하나가 될 수 있을 것이다.