• Title/Summary/Keyword: Transformer Substation

Search Result 159, Processing Time 0.025 seconds

Performance Evaluation of SHF Sensor for Partial Discharge Signal Detection on DC Rectifier (DC 정류기 부분방전 신호검출을 위한 SHF 센서의 성능평가)

  • Jung, Ho-Sung;Park, Young;Na, Hee-Seung;Jang, Soon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1056-1060
    • /
    • 2012
  • Online monitoring system is becoming an essential element of railway traction system for utilized to condition based malignance management and various techniques currently employed in railway traction system. Among the various techniques, it is efficient to detect partial discharge signals by electromagnetic wave detection in order to detect insulation fault of rectifier. Although VHF (Very High Frequency), UHF (Ultra High Frequency) sensors were adopted to detect partial discharge of power facilities, due to characteristics of urban railway, excessive noise occurs from 500 MHz to 1.5 GHz on UHF bandwidth. In this paper a new measurement system able to monitoring the conditions of power facilities on DC substation in metro was studied and set up. The system uses UHF sensors to measure the partial discharge of the rectifier due to electric faulting and dielectric breakdown. Comparison and estimation for performance of SHF sensor which had devised to detect partial discharge signal of urban railway rectifier has conducted. In order to estimate performance of SHF sensor, we have compared the sensor with existing UHF sensor on sensitivity upon frequency bandwidth generated by pulse generator, and also we have verified performance of the SHF sensor by detection results of partial discharge signal from urban railway rectifier.

A Study on SCOTT Transformer Protection Relay Malfunction Case and Improvement Methodology (스코트 변압기 보호계전기 오동작 사례분석 및 개선방안 고찰)

  • Lee, Jong-Hwa;Lho, Young-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.394-399
    • /
    • 2017
  • In Korean AC power railway substations, SCOTT winding transformers are under operation to have a single phase power supply together with a phase angle of $90^{\circ}$ on the secondary side of the main transformer. In the case of an internal fault of the transformer, the transformer protection relay should be cut off on the primary side, the transformer should be inoperative to the external fault of the transformer or to the normal train operation. Reducing the malfunction of the relay through an exact fault determination is very important for securing a stable power system and improving its reliability. The main transformers are protected using Buchholtz's relay and a differential relay as the internal fault detection devices, but there are some cases of the main transformer operation under the deactivation of this protection function due to a malfunction of the differential relay. In this paper, the characteristics of the SCOTT transformer and differential relay as well as the malfunctioning of the protection relays are presented. The modeling of the SCOTT transformer protection relay was accomplished by the power system analysis program and the Comtrade file from 'A substation', which was used as the input data for the fault wave, and the harmonics were analyzed to determine if the relay operates or not. In addition, an improvement plan for malfunctioning cases through wave form analysis is suggested.

A Study on the Confirmation of non-flammabikity of the Cast Resin Mold Transformer in Subway Substation (지하철 변전실용 진공주형형 몰드변압기의 난연성 확인에 관한 연구)

  • 정용기;장성규;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 1998
  • This dissertationhas confirmed the non-flam mability of cast mold transformer that is increasingly used lately. As a research progress, the investigation has been performed on the installation status and each line of the subway system which have the most mold transformer accidents, and the impediment status of the transformer for rectifier and the high-voltage distribution transformer per each manufacturer. Then, a high voltage mold of the actual mold transformer has been installed in the horiwntal heating furnace and the heat has been applied by the standard heating temperature curve of KSF 2257(Fireproof testing meth od of the construction structures: 1993). Accordingly, the combustibility of the mold transformer based on the test results has been found that 78 minutes has been required for the complete burning per the KSF 2257 combustion test curve and that, after stopping the heat application of the horizontal furnace after ignition, the flame progress has not been made but shown as the self-extinguishing characteristics when the flame progress has been checked. Thus, the non-flammability and self-extinguishability of the mold transformer have been confirmed. The result of this dissertation has indicated that the accident involving mold transformer has been progressed and expanded by the dielectric breakdown or void due to the crack in the mold rather than a fire accident caused by a short-circuit or an overload.r an overload.

  • PDF

Characteristics of Electric and Mgnetic Field Profiles from Transformer and GIS Perimeters (변압기와 GIS 주변에서 전장과 자장 분포의 특성)

  • 이복희;이승칠;안창환;길형준;장석훈;박동화;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.51-58
    • /
    • 1998
  • This paper deals with the power frequency electric and magnetic profiles from transformer and gas-insulated swichgear(GIS) perimeters in the indoor power substation. Measurements of electric and magnetic field magnitudes were carried out by using single axis and three axes field meters at a height of 1[m]. The resultant electric and magnetic field profiles measured in the vicinity of the transformer were displayed as a 2-dimensional plot. The electric fields intensity are relatively low value of about 2.3~9[V/m], and the magnetic fields intensity range from 0.3 to [$20.3\mu$T]. Also, in the GIS perimeter the electric fields intensity are in the range of 2.2~2.5[V/m], and the high magnetic fields are largely localized to the intermediate section of the GIS and their amplitudes are [$1.2~39.5\mu$T]. Metal enclosures of transform and GIS play a role in reducing the electric field, and the magnetic fields are characterized by a rapid decrease with distance from the transformer and GIS enclosures.

  • PDF

Characteristics of Saturation and Circulating Current Based on Winding and Iron Core Structure of Grid-connected Transformer in Energy Storage System (ESS 연계용 변압기의 결선방식 및 철심구조에 따른 순환전류와 포화특성에 관한 연구)

  • Tae, Dong-Hyun;Lee, Hu-Dong;Kim, Ji-Myung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2020
  • Since the fire accident of ESS (energy storage system) occurred at Gochang KEPCO Power Testing Center in August 2017, 29 fire cases with significant property losses have occurred in Korea. Although the cause of fire accidents have not been identified precisely, it should be considered battery and PCS (power conditioning system) as well as unbalance issues in the distribution system. In particular, circulating currents in a neutral line of a grid-connected transformer, which can affect a magnetized current, may have a negative effect on the ESS with unintentional core saturation and surge voltages at the secondary side of the transformer. Therefore, this paper proposes the modeling of the distribution system, which was composed of a substation, grid-connected transformer, and customer loads using PSCAD/EMTDC S/W, to analyze the phenomena of circulating current and surge voltages of the transformer with unbalanced currents in the distribution system. This paper presents a countermeasure for a circulating current with the installation of NGR (neutral grounding resistor) in grid-connected transformer. From the simulation results, it is clear that exceeding the circulating current and surge voltage at the secondary side of the transformer can be one of the causes of fire accidents.

Cooperation Algorithms of LTC and SC for Distribution Volt/Var Regulation (배전계통 전압/무효전력 보상을 위한 LTC변압기와 SC의 협조운전 알고리즘)

  • Choi, Joon-Ho;Kim, Jae-Chul;Nam, Hae-Kon;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.399-402
    • /
    • 2003
  • In this paper, the on line volt/var control algorithms of the food Load Tap Changer (LTC) transformer and Shunt Capacitor(SC) are proposed for distribution volt/var regulation. In the existing volt/var control of the distribution substation, the voltage of feeders and var of distribution systems is mainly controlled by the LTC transformer tap position and on/off status of the shunt capacitor. The LTC and shunt capacitor bank has discrete operation characteristics and therefore it is very difficult to control volt/var at the distribution networks within the satisfactory levels. Also there is limitation of the operation times of the LTC and shunt capacitor bank because it is affects on their functional lifetime. The proposed volt/var control algorithm determine an optimal tap position of LTC and on/off status of shunt capacitors at a distribution network with the multiple feeders. The mathematical equations of the proposed method are introduced. Simple case study was performed to verify the effectiveness of the proposed method.

  • PDF

Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector (전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석)

  • Kim, Jae-Kon;Min, YoungJe;Kim, Mock-Yeon;Kwark, ByeongSub;Park, Hyunjoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

The Basic Study on 800kV GIS Development (800kV GIS 개발을 위한 기본연구)

  • Kim, J.B.;Yang, D.I.;Song, W.P.;Lee, C.H.;Noh, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1341-1343
    • /
    • 1995
  • The maximum transmission voltage in our country is going to change 345kV into 765kV owing to the increase of Electrical Power Demand and power System Stability. Our company is developing 800kV GIS and 765kV Transformer which are main equipments in 765kV substation. This paper describs the specification on 800kV GIS which we prepared for 800kV 8,000A 50kA GIS development. This specification is supported by Public Standards and Data. And, we are designing the 800kV GIS on this specification and drawing up the 800kV GIS layout for type test.

  • PDF

Analysis of Rate-of-rise of VFTO Measured in Transformer During the Operation of Disconnector (단로기 조작 시 변압기 단자에서 측정된 VFTO의 상승률 분석)

  • Lee, Ji-Young;Oh, Yun-Sik;Seo, Hun-Chul;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.45-46
    • /
    • 2011
  • 단로기와 회로 차단기의 스위칭 동작에 의해 발생하는 Very Fast Transient Overvoltage(VFTO)는 변압기, 회로차단기 등 GIS 전력소자에 큰 충격을 주어 잠재적인 위험이 된다. VFTO는 전력기기 소자 및 절연체 손상의 주된 원인이므로 시스템을 설계할 때 반드시 VFTO 최대값을 고려해야 한다. 본 논문에서는 55kV Gas Insulated Substation(GIS)를 분포정수회로기반으로 모델링하여 다양한 투입위상각에 따른 VFTO 상승률을 모의하였다. 이때, EMTP-RV를 이용하여 변압기로 전파된 VFTO를 측정하여 그 경향을 분석하였다.

  • PDF

Analysis of Rate-of-rise of VFTO in GIS according to Measurement Point (측정 위치에 따른 GIS에서 VFTO 상승률 분석)

  • Oh, Yun-Sik;Seo, Hun-Chul;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.519-520
    • /
    • 2011
  • In Gas Insulated Substation(GIS), Very Fast Transient Overvoltages(VFTOs) are generated by the switching operation of disconnector or circuit breaker and it is propagated to each component of GIS. Each component of GIS is modeled by lumped line model and distributed line model based on equivalent circuits. The various cases which can be operated and the various closing point-on-wave are considered. In this paper, magnitude and rate-of-rise of VFTO are simulated and analyzed by comparing the simulation results. Measurements are performed at transformer and circuit breaker.

  • PDF