• Title/Summary/Keyword: Transformer Oil

Search Result 400, Processing Time 0.028 seconds

Transformer Temperature forecast method using Top Oil Temperature Rising & Current (최상부 유온 상승과 전류를 이용한 변압기 온도 예측 방법)

  • Ko, Dong-Wook;Kim, Kwang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1689-1690
    • /
    • 2008
  • In this paper, The method of a temperature rasing forecast is suggested and simulated. The data used in this simulations exists in the KD Power and it was obtain by real transformer. The method of temperature forecast is based on a top oil temperature rising modeling which is proposed by the IEEE journal. We propose modifications of a modeling that accurately predicts a future transformer temperature. This Method is verified by simulations.

  • PDF

Numerical analysis for the dis tribution transformer design (400KVA급 배전 변 압기 열 유동해석)

  • Yang, S.W.;Kim, W.S.;Kweon, K.Y.;Lee, S.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.699-702
    • /
    • 2008
  • This paper describes the numerical simulations in the cooling of the radiator in a distribution transformer. The aim of this work is the cooling optimization of the transformer by CFD simulations. A clear understanding of the cooling pattern in a radiator which is a main heat remover in the power transformer is essential for optimizing the radiator design increasing the thermal efficiency. In this paper we study the heat transfer and fluid flow in a 3-phase 400kVA transformer. The plate radiators of this transformer become wrinkled (corrugated radiator) and there are filled with transformer oil. The oil is circulated due to the natural convection driven by buoyancy effects through radiators so that the ultimate cooling medium is the surrounding air. In the design of transformers, it is of interest to minimize the cost and size of radiators. The obtained results show the temperature and flow distributions and the possibility to optimize the transformer with 3-dimensional CFD models using FLUENT.

  • PDF

Analysis for Insulating Degradation Characteristics with Aging Time for Oil-filled Transformers and/or Correlation between using Linear Regression Method (유입식 변압기의 열화시간에 따른 절연 열화특성 및 선형회귀법을 이용한 상관관계 분석)

  • Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.693-699
    • /
    • 2010
  • General transformer's life is known as paper insulation' life. If a transformer is degraded by these aging factors, it is known that electrical, mechanical and chemical characteristics for transformer's oil-paper are changed. When the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. The paper breakdown is accompanied by an increase in the content of furanic compounds within the dielectric liquid. In this paper it is aimed at analysis on correlation between aging characteristics for insulating diagnosis of thermally aged paper. For investigating the accelerated aging process of oil-paper samples accelerating aging cell was manufactured for estimating variation of paper insulation during 500 hours at $140^{\circ}C$ temperature. To derive the results, it was performed analysis such as tensile strength(TS), depolymerization(DP), dielectric strength(DS), relative permittivity, water content(WC) and furan compound(FC) for aged paper. Also for analyzing correlation between insulating degradation characteristics, we used linear regression method. As as results of linear regression analysis, there was a close correlation between TS and DP. WC, FC. But dielectric strength was a weak correlation with aging time.

A Study on the Computer Simulation for the Complete Combustion Reaction of PCBs in Supercritical Water (초임계수 내에서 PCBs 완전산화반응의 전산모사에 관한 연구)

  • Cho, Jungho;Kim, Kyeongsook;Son, Soon Hwan;Kim, Yeong-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • In this study, computer simulations have been performed for the removal of the transformer oil contaminated with polychlorinated biphenyls (PCBs) in supercritical water through complete combustion reaction. We regarded n-decane as a main material of transformer oil, and it is assumed to be 3.0 wt% of transformer oil in supercritical water. We used Peng-Robinson equation of state to estimate the physical properties of components in supercritical water. Throughout the computer simulation done in this work, we could explain the solubilities of 3.0 wt% of transformer oil and excess oxygen in supercritical water.

Dispersion Technique of Ceramic Nanoparticles in Transformer Oil (세라믹계 나노분말을 함유한 변압기 절연유의 분산기술)

  • Song, Hyun-Woo;Choi, Cheol;Choi, Kyung-Shik;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.44-45
    • /
    • 2005
  • Both $Al_2O_3$ and $SiO_2$ nanopowders were ball-milled to break large agglomerates$(500nm\sim10{\mu}m$). To improve the dispersion of ball-milled nanoparticles in transformer oil, surface modification was performed with oleic acid(OA). The modified nanoparticles were examined by the particle size analyzer, electron microscope, Infrared spectroscopy and stability analyser. Particle Size distributions were measured for ball-milled particles, and the results were compared with the size distribution of primary particles. FTIR results indicated that hydrophobicity of modified nanoparticles was due to the chemical reaction between hydroxyl groups of particle surface and oleic acid. The dispersion stability of surface-modified nanoparticles was quite good in transformer oil.

  • PDF

Study on the Effectiveness of Continuous Water Removal in Oil Immersed Transformers (유침절연 변압기에서 연속적 수분제거 유효성에 관한 연구)

  • Sun, Jong-Ho;Hwang, Don-Ha;Kim, Jin-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.20-25
    • /
    • 2016
  • This paper describes the effectiveness of continuous water removal in oil immersed transformers. Insulation oil in which insulation papers were immersed were prepared for tests and water concentrations in oil with heating time were measured at five oil temperatures. Also, the tests that water dissolved in $100^{\circ}C$ oil was removed at once and continuously at $50^{\circ}C$ and $100^{\circ}C$ were performed for consideration of effective method for water removal. Test results indicated that the oils for water measurement have to be extracted at similar temperatures and water in oil has to be continuously removed at higher temperatures for more effective water management of transformers.

Development of Deterioration Detecting Sensor in Oil for Diagnosis of Oil-Filled Transformers (유입 변압기 진단을 위한 유중 열화 측정 센서의 개발)

  • Min, Kyeoung-Rae;Yoon, Yong-Han;Kim, Young-Chun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.128-130
    • /
    • 2000
  • This paper develops the deterioration detecting sensor in oil to monitor and diagnose oil-filled transformer more effectively. The on-line inspection of the oil-filled transformers used the temperature, the changes of the capacitance, the $tan{\delta}$ in oil. This sensor was designed based on the concentric cylindrical type so that it could be placed inside of the oil-filled transformer. And comparing to the existing system, it was proven to be appropriate. Establishment of the proposed sensor helps to build the confidence in monitoring of the oil-filled transformers.

  • PDF

The Study on Characteristics for Thermal Aging of the Layer Insulation in Transformers (변압기 층간 절연지의 열열화 특성 평가에 관한 연구)

  • 이병성;송일근;김동명;박동배;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.406-409
    • /
    • 2002
  • The primary insulation system used in an oil-filled transformer is Kraft paper, wood, porcelain and, of course, oil. Modern transformers use paper that is chemically treated to improve its tensile strength properties and resistance to aging caused by immersion in oil. These insulation papers are mainly aged to thermal stress. Over the course of the insulation paper and oil's life it is exposed to high temperatures, oxygen and water. Its interaction with the steel of the tank and core plus the copper and aluminium of the windings will eventually cause the chemical properties of the oil to decay. High temperature have an effect on mechanical strength of cellulous paper using the layer insulation. We made two aging cell in which thermal aging tests of insulation papers and mineral oil are conducted. It is measured dielectric strength, number of acid, moisture, etc. of insulation paper and oil aged in the aging cells.

  • PDF

A Study on Suggestion of Insulating Oil Ageing Degree in Pole-Transformer by Absorbance (흡광도법에 의한 주상변압기 절연유의 열화판정기준 설정에 관한 연구)

  • Lee, Dong-Zoon;Jung, Jong-Uk;Kim, Kyung-Hwa;Kwak, Hee-Ro;Yun, Yong-Ja
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1851-1853
    • /
    • 1996
  • In this paper the criteria for insulating oil condition of pole transformer were suggested by applying the UV-Visible spectrophotometric method. Ageing of insulating oil caused the change in absorbances of oil os well os the deterioration of electrical properties of oil. By comparing the electrical properties such as $tan{\delta}$ and breakdown voltage with the UV-Visible absorbances of oil, criteria for absorbance values determining oil condition were established. This UV-Visible spectrophotometric method might be applied in ageing analysis of oil and be expected to replace the current method.

  • PDF