• Title/Summary/Keyword: Transformer Inrush Current

Search Result 80, Processing Time 0.032 seconds

A Study on Optimum control for Inrush current of Microwave Oven using Statistical Method (통계적 방법에 의한 전자레인지의 돌입전류 최적화 연구)

  • 이민기;고강훈;권순걸;이현우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.61-67
    • /
    • 2001
  • Magnetic flux saturation dependent on phase of initial input power to high voltage transformer used in Micro wave oven. To limit inrush current high voltage transformer the relay contact should be ˝ON˝ when the lowest point of input voltage phase. The improved circuit is form compensating interrupt signal Micom input so the relay contact can be ˝ON˝ when the inrush current is lower. Test results are presented that improved circuit satisfies the limit 50[A] of requirement for input voltage variation mode. And the result verified by statistical method.

  • PDF

Analysis of inrush current caused by voltage sag in three-phase transformer and induction motor (삼상 변압기와 유도전동기에서의 전압 sag에 의한 들입 전류 분석)

  • Kim, Kyoung-Nam;Ahn, Seon-Ju;Jung, Il-Yop;Moon, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.307-309
    • /
    • 2005
  • This paper studies the effects caused by symmetrical and unsymmetrical voltage sags on three-phase transformer and induction machine. The voltage sag on transformer and induction machine gives rise to inrush current. This inrush current makes sag more severe. These effects depend or many elements such as sag magnitude and duration, type of sag, and fault and recovery voltage instants.

  • PDF

Performance Improvement of Protective Relaying for Large Transformer by Using Voltage-Current Trend and Flux-Differential Current Slope Characteristic (전압-전류 추이와 자속-차전류 기울기 특성을 이용한 변압기 보호계전기법의 성능 개선)

  • Park, Chul-Won;Park, Jae-Sae;Jung, Yun-Man;Ha, Kyung-Jae;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.43-50
    • /
    • 2004
  • Percentage differential characteristic relaying(PDR) has been recognized as the principal basis for power transformer protection. Second harmonic restraint PDR has been widely used for magnetizing inrush in practice. Nowadays, relaying signals can contain 2nd harmonic component to a large extent even in a normal state, and 2nd harmonic ratio indicates a tendency of relative reduction because of the advancement of material. Further, as the power system voltage becomes higher and more underground cables are used, larger 2nd harmonic component in the differential current under internal fault is observed. And then, conventional 2nd harmonic restraint PDR exposes some doubt in reliability. It is, therefore, necessary to develop a new algorithm for performance improvement of conventional protective relaying. This paper proposes an advanced protective relaying algorithm by using voltage-current trend and flux-differential current slope characteristic. To evaluate the performance of the proposed algorithm, we have made comparative studies of PDR, fuzzy relaying and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP, and data collection is made through simulation of various internal faults and inrush. As the results of test, the new proposed algorithm was proven to be faster and more reliable.

Identification of Inrush and Internal Fault in Indirect Symmetrical Phase Shift Transformer Using Wavelet Transform

  • Bhasker, Shailendra Kumar;Tripathy, Manoj;Kumar, Vishal
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1697-1708
    • /
    • 2017
  • This paper proposes an algorithm for the differential protection of an Indirect Symmetrical Phase Shift Transformer (ISPST) by considering the different behaviors of the compensated differential current under internal fault and magnetizing inrush conditions. In this algorithm, a criterion function is defined which is based on the difference of amplitude of the wavelet transformation over a specific frequency band. The function has been used for the discrimination between three phase magnetizing inrush and internal fault condition and requires less than a quarter cycle after disturbance. This method is independent of any coefficient or threshold values of wavelet transformation. The merit of this algorithm is demonstrated by the simulation of different faults in series and excitation unit and magnetizing inrush with varying switching conditions on ISPST using PSCAD/EMTDC. Due to unavailability of in-field large interconnected transformers for such a large number of destructive tests, the results are further verified by Real Time Digital Simulator (RSCAD/RTDS). The proposed algorithm has been compared with the conventional harmonic restraint based method that justifies the application of wavelet transform for differential protection of ISPST. The proposed algorithm has also been verified for different rating of ISPSTs and satisfactory results were obtained.

Protective Relaying Algorithm for Transformer Using Neuro-Fuzzy (뉴로-퍼지를 이용한 변압기 보호계전 알고리즘)

  • 이명윤;이종범;서재호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.722-730
    • /
    • 2003
  • Current differential relay is commonly used to protect power transformer. However, current differential relay will be tripod by judging like internal fault during inrush occurring in transformer. To resolve such problem, this paper proposes a new protective relaying algorithm using Neuro-Fuzzy Inference. A variety of transformer transition states are simulated by BCTRAN and HYSDT of EMTP. Primary phase voltage and differential current are obtained from simulation. The target data which are used in Neuro-Fuzzy algorithm are obtained from transformed primary voltage and current. Then, these are trained by Neuro-Fuzzy algorithm. The trained Neuro-Fuzzy algorithm correctly distinguishes whether internal fault occurs or not, within 1/2 cycle after fault. Accordingly, it is evaluated that the proposed algorithm has good relaying characteristics.

A Decision Scheme for Optimal Insertion Resistance in Superconducting Fault Current Limiter for Reduction of the Transformer Inrush Current (여자돌입전류 제한용 초전도한류기의 최적투입저항 결점)

  • Seo, H.C.;Rhee, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.37-39
    • /
    • 2008
  • This paper suggests a decision scheme for optimal insertion resistance in an Superconducting Fault Current Limiter (SFCL) application to reduce the transformer inrush current. This scheme and the SFCL model are implemented using Electromagnetic Transient Program (EMTP). We determine the optimal SFCL resistance by EMTP simulation, and this value is applied to model the SFCL by EMTP. The simulation results show the validity and effectiveness of the suggested scheme and the ability of a SFCL to reduce the inrush current.

  • PDF

Inrush Current Detection of Power Transformer using Flux-current Derivative Curve (자속-전류비율곡선을 이용한 전력용 변압기의 여자돌입검출)

  • Kim, S.K.;Park, C.W.;Shin, M.C.;Suh, H.S.;Jang, B.T.;Kim, I.D.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.186-189
    • /
    • 1996
  • Convential inrush current detection method is used to harmonic restraint method by filtered second frequency component. Nowadays this technique must be modified because harmonics are occurred in steady state of power system. A purpose of this study is to develop of inrush current detection relaying algorithm for power transformer based on flux-current derivative curve method. We used the relaying signals obtained from EMTP simulation.

  • PDF

Power Transformer Modeling and Transient Analysis using PSCAD (PSCAD를 이용한 전력용 변압기 모델링과 과도 해석)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.122-129
    • /
    • 2016
  • Current differential protection relaying with second harmonic restraint is the main protection for large capacity power transformer. PSCAD simulation program is widely used for modeling of dynamic varying transients phenomena. This paper deals with a power transformer model and transients analysis using PSCAD software to develop IED for power transformer. Simulation was carried out using a three phase 40MVA, 154/22.9kV, 60Hz, two-winding transformer with Y-Y connection used in actual fields. The paper analyzed transformer magnetizing inrush, external fault, and internal fault conditions with this model in the time domain. In addition, we performed an analysis in the frequency domain using FFT during several conditions.

Advanced Protective Relaying Algorithm by Flux-Differential Current Slope Characteristic for Power Transformer (전력용 변압기용 자속-차전류 기울기 특성에 의한 개선된 보호계전 알고리즘)

  • 박철원;신명철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.382-388
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of power transformers is current percentage differential relaying(PDR). However, the harmonic components could be decreased by magnetizing inrush when there have been changes to the material of iron core or its design methodology. The higher the capacitance of high voltage status and underground distribution, the more differential current includes the second harmonic component during occurrence of an internal fault. Therefore, the conventional harmonic restraint methods need modification. This paper proposes an advanced protective relaying algorithm by fluxt-differential current slope characteristic and trend of voltage and differential current. To evaluate the performance of proposed algorithm, we have made comparative studies of PDR fuzzy relaying, and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP99, and data collection is made through simulation of various internal faults and inrush. As the results of test. the new proposed algorithm was proven to be faster and more reliable.

Calculation of Inrush Current of a Transformer using FEM (유한요소법에 의한 변압기의 돌입전류 계산)

  • 이준호;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.64-70
    • /
    • 1999
  • The inrush current of transformer can flow when the overvoltage caused by surge or external faults is applied. In this paper, an algorithm for the calculation of this inruch current is proposed. The capacitances of windings are precalculated by using 3 dimensional FEM and are appended to circuit of the transformer. And transient characteristics of the transformer are analyzed by axisymmetric FEM which is coupled magnetic field of transformer and circuit of transformer. When a transformer encounters abnormal voltage, using the proposed method, internal magnetic field of transformer, voltages and currents of windings are calculated.

  • PDF