• Title/Summary/Keyword: Transformation power

Search Result 692, Processing Time 0.028 seconds

Implementation of 3-Phase 3-Wire Active Power Filter with an Instantaneous PSD based p-q theory (순시 PSD기반의 p-q이론을 사용한 3상 3선 능동전력필터 시스템 구현)

  • Kim Jung-Kun;Lim Young-Cheol;Jung Young-Gook
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.152-157
    • /
    • 2002
  • This paper describes the implementation of 3-phase 3-wire active power filter system with a instantaneous PSD for distorted and unbalanced power conditions. The positive sequence voltage of the distorted and the unbalanced power system Is calculated by the instantaneous PSD, and phase transformation matrix of the instantaneous power theory is achieved with detected positive sequence voltage. Finally, the proposed method is experimented and tested under unbalanced nonlinear load as well as unbalanced/distorted condition in power system.

  • PDF

A Study of Control Algorithm For Series Active Power Filter Using Performance Function (성능함수를 이용한 직렬형 능동전력필터의 제어알고리즘에 관한 연구)

  • Ko Soo-Hyun;Kim Jin-Sun;Kim Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.199-202
    • /
    • 2002
  • This paper suggests the control algorithm of a 3-phase 3-wire series active power filters which have harmonic voltage source and harmonic current source This suggested control algorithm can compensate harmonics which are generated by nonlinear load such as diode or thyristor converter and reactive power in 3-phase 3-wire power distribution system This control algorithm extracts a compensation voltage reference from performance function without phase transformation Therefore this control algorithm is simpler than any other conventional control algorithm. 3-phase 3-wire series active power filter and hybrid active power filter is manufactured and experiments are carried out for harmonic voltage source and harmonic current source to verify the effectiveness of presented control algorithm Experimental results are presented in this Paper, as well.

  • PDF

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

A study on Power Quality Recognition System using Wavelet Transformation and Neural Networks (웨이블릿 변환과 신경회로망을 이용한 전력 품질 인식 시스템에 관한 연구)

  • Chong, Won-Yong;Gwon, Jin-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • Nonstationary power quality(PQ) signals which the Sag, Swell, Impulsive Transients, and Harmonics make sometimes the operations of the industrial power electronics equipment, speed and motion controller, plant process control systems in the undesired environments. So, this PQ problem might be critical issues between power suppliers and consumers. Therefore, We have studied the PQ recognition system in order to acquire, analyze, and recognize the PQ signals using the software, i.e, MATLAB, Simulink, and CCS, and the hardware. i.e., TMS320C6713DSK(TI), The algorithms of the PQ recognition system in the Wavelet transforms and Backpropagation algorithms of the neural networks. Also, in order to verify the real-time performances of the PQ recognition system under the environments of software and hardware systems, SIL(Software In the Loop) and PIL(Processor In the Loop) were carried out, resulting in the excellent recognition performances of average 99%.

A Transformerless Cascade Multilevel PWM Rectifier with Unity Power Factor

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.576-580
    • /
    • 2001
  • This paper presents a casca multilevel PWM rectifier without the isolation transformers for energy build-up at each inverter modules; The features and advantages of the proposed PWM rectifier can be summarized as follows; 1) It realizes the high power high voltage AC/DC power conversion, 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained. Finally, it will be shown that the system simulation reveals the validity of analyses

  • PDF

Vibration Power Flow Analysis of Coupled Shell Structures (연성된 쉘 구조물의 진동 파워흐름해석)

  • Kim, Il-Hwan;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.492-497
    • /
    • 2002
  • In this paper, Power Flow Analysis(PFA) method has been applied to the prediction of vibration energy density and intensity of coupled shell structures in the medium-to-high frequency ranges. To consider the wave transformation at joint between shell elements, power transmission and reflection coefficients are investigated for various joint angles, and here Donnell-Mushtari thin shell theory has been used. For validations computations are performed to analyze the response of coupled shells by changing the excitation frequency and damping loss factor.

  • PDF

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.

An Experimental Study on Pulsation Noise Reduction of Power Steering Oil Pump (Power Steering Oil Pump의 맥동소음 저감에 관한 실험적 연구)

  • 안세진;김명환;박진형;정의봉;유승근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.395-400
    • /
    • 2003
  • Power steering oil pump is generally used to support the power to steering system of most kinds of vehicle. The noise caused by power steering ell pump make passenger to be uncomfortable, because its frequency is higher than that is produced by engine. In this paper, the field test of real car was carried out to analyze the phenomenon of the pump noise, and the lab test was also performed to survey the dynamic characteristics of pump assembly. The results of the series of tests show that frequency range of 600-800㎐ should be dealt with to reduce the pump noise. After four cases of design changes were carried out to actually reduce the noise and tested in condition of partial assembly. Some improvement can be gotten from a certain design change.

  • PDF

Universal power converter using High-Speed Switching (고속 스위칭에 의한 만능 전려변화기 구성)

  • Isnanto, Isnanto;Budhi, Prayoga;Choi, Woo-seok;Park, Sung-jun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.337-338
    • /
    • 2013
  • Combination the several type of single phase power conversion utilized simply topology are proposed in this paper. Totally four kind of converter are investigated, they are Boost AC/AC Converter, Buck AC/AC Converter, Boost AC/DC Converter, and Buck DC/AC Converter. Two types action mode are presented to determine the functional of circuit. First is AC chopper action mode, representation of the AC/AC converter. AC chopper action mode offered the sinusoidal current waveform, better power factor, faster dynamics, and smaller input/output filter. They present high robustness, offer safe commutation and have high efficiency. The second is full bridge action mode, determined the transformation AC to DC power and otherwise. Four switching devices and one magnetic contactor will establish the mode operation of circuit and manage the flow of power proceed in proper. The correction and advance of the kind of converter are verified by simulation.

  • PDF

The Harmonics and Reactive Power Compensation with Series Active Power filter in 3-phase 4-wire System (3상 4선식 전력시스템에서 직렬형 능동필터에 의한 고조파전류와 무효전력 보상에 관한 연구)

  • Kim, Jin-Sun;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1072-1074
    • /
    • 2003
  • In this paper, a new control strategy of a series active power filter using direct compensating voltage extraction method is proposed. This control algorithm compensates harmonics, reactive power and neutral line currents which are generated by balanced or unbalanced nonlinear loads. The advantage of this method is that the compensating voltage of the series active power filter can be extracted without phase transformation. Therefore, calculation time is shorten and the control method is simple compared with conventional method as the p-q theory In addition, this control strategy was applied for the series active power filter in 3-phase 4-wire system which is widely employed in distributing electric energy to several office building and manufacturing plants. Some results obtained from the experimental model using the proposed method are presented to demonstrate and confirm its validity.

  • PDF