• Title/Summary/Keyword: Transformant Bacillus subtilis

Search Result 29, Processing Time 0.028 seconds

Cloning of a Hemolytic Mosquitocidal Delta-endotoxin Gene (cyt) of Bacillus thuringiensis 73E10-2 (serotype 10) into Bacillus subtilis and Characterization of the cyt Gene Product

  • Kim, Kwang-Hyeon;Ohba, Michio;Kim, Byung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.326-330
    • /
    • 1996
  • To illustrate whether a hemolysin in $\delta$-endotoxins of Bacillus thuringiensis strain 73E10-2 and subsp. israelensis had immunological identity, a cyt gene of the strain 73E10-2 which encodes a hemolysin was cloned to B. subtilis (transformant 2753). The transformant 2753 containing cyt gene produced the hemolysin which lysed sheep erythrocytes after treatment of proteinase K. The hemolysin was proved also to be toxic against mosquito larvae (Aedes aegypti). The molecular weight of the hemolysin produced from the transformant 2753 was determined to be about 25 kDa by SDS-PAGE and immunoblot. The hemolysin in $\delta$-endotoxin of subsp. israelensis and subsp. kyushensis did not react on immunoblot using polyclonal anti-$\delta$-endotoxin of the strain 73E10-2, but 70-140 kDa mosquitocidal toxins in $\delta$-endotoxin of subsp. kyushuensis reacted.

  • PDF

Transformation of Bacillus Subtilis by Streptomyces bobili R-Plasmid DNA (Streptomyces bobili의 R-Plasmid. DNA에 의한 Bacillus subtilis의 Transformation)

  • 김상달;도재호
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.163-168
    • /
    • 1983
  • The penicillin resistant plasmid DNA was prepared from Streptomyces bobili YS-40, producing penicillinase, by the phenol extraction method and introduced into Bocillus subtilis IAM 12118 by the transformation procedure of Mahler method. The optimal pH and temperature on the transformation was 7.0, 3$0^{\circ}C$ respectively. Above 20 minutes contact of plasmid DNA and recipient cell was shown the high transformation frequency. The transformant of penicillin resistance was proportionally increased as increase of the DNA concentration. The addition of lysine in transformation system increased the transformation frequency about 6-fold and the addition of the chloramphenicol did not affect the transformation frequency.

  • PDF

Molecular Cloning of $\beta$-Galactosidase from Bacillus subtilis HP-4

  • Kim, Jeong-Ho;Lee, Jae-Chang;Huh, Jeong-Won;Chung, Ki-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.227-231
    • /
    • 1991
  • A gene coding for a $\beta$-galactosidase of Bacillus subtilis HP-4 was cloned in E. coli JM109 by inserting HindIII digested fragment of B. subtilis HP-4 chromosomal DNA into the site of pBR322 and selecting recombinant transformant showing blue color on X-gal plate. The recombinant plasmid, named pBG109, was found to contain the 1.4 Kbp HindIII fragment originated from B. subtilis HP-4 chromosomal DNA by Southern hybridization. The cloned gene was stably maintained and expressed in E. coli JM109 and the pBG109 encoded $\beta$-galactosidase had the same enzymatic properties as those of $\beta$-galactosidase produced by B. subtilis HP-4.

  • PDF

Optimization of Culture Conditions and Analysis of Plasmid Stability of a Transformant Bacillus subtilis for Cytidine Deaminase Production

  • Kim, Soo-Hyun;Song, Bang-Ho;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.116-120
    • /
    • 1991
  • The transformant Bacillus subtilis ED213 carrying the pSO100 which cloned the cdd gene encoding cytidine deaminase (cytidine /2'-deoxycytidine aminohydrolase, EC 3.5.4.5, CDase) originated from wild type B. subtilis was cultivated in Spizizen minimal medium (SMM). To overcome poor expression of the cdd gene in SMM medium, the medium compositions and growth conditions were optimized. The optimized medium compositions and growth conditions were cytidine concentration of 80 mg/l, glycerol of 25 g/l, and $(NH_4)_2SO_4$ of 10 g/l, along with $37^{\circ}C$ and pH 7.0. The intracellular CDase production was increased 3 times from 1,000 unit/ml to 3,200 unit/ml, and extracellular CDase also increased from nearly undetectable amounts to 1,500 unit/ml. The cytidine concentration was signified as the most critical compositional factor for overproduction of CDase by increasing the cell density mainly in culture broth. The plasmids were more stable in cells that were grown in original SMM medium with stability of 90% compared to those grown in optimized SMM medium with stability of 80% after 48 hours cultivation. The most active amplification of plasmid was occurred in the logarithmic phase, which showed a value around four times higher than the initial copy number. In the exponential phase, the CDase production was closely related to the plasmid copy number along with the cell density. However, it was not accorded with cell density at the stationary phase.

  • PDF

Genetic Transfer of Bacillus pasteurii Urease Gene into Antagonistic Bacillus subtilis YBL-7 against Root Rotting Fungi Fusarium solani (Bacillus parteurii Urease Gene의 생물방제균 Bacillus subtilis YBL-7내에서의 발현)

  • 김용수;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.356-361
    • /
    • 1991
  • - To investigate the possibility of genetic development for a multi-purpose strain of Bacillus subtilis YBL-7 against Fusat-iurn solani causing root rot of many impotant corps, the plasmid pGU66 inserting urease gene of Bacillus pasteurii had been introduced into Bacillus subtilis YBL-7 by PEG-induced protoplast (PIP) transformation system. Protoplasts of B. subtilis YBL-7 were prepared by treating the cells with lysozyme (200 $\mu g$/ml) in hypertonic buffer (SMMP). The highest transformation frequency was achieved when cells of the strain with lysozyme at $42^{\circ}C$ for 90 minutes. Optimal transformation was obtained using polyethylene glycol (MW 4000) at final concentration of 30% (V/V). The transformation frequency was increased proportionally to 1.2 $\mu g$ of plasmid DNA. At best condition, the transformation frequency (transformants/ regenerants/$\mu g$ of DNA) for pGU66 was appoximately $4 \times 10^{-3}$. Also, the urease gene was strongly expressed in the transformants of B. subtilis YBL-7 and maintained steadily. The antifungal ability of transformant was very similar to that of B. ssubtilis YBL-7.

  • PDF

생물방제균 Bfacillus subtilis YB-70의 외부 Urease 유전자 도입과 길항력 증강

  • Choi, Jong-Kyu;Kim, Yong-Su;Lee, Eun-Tag;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.30-36
    • /
    • 1997
  • To genetically breed powerful multifunctional antagonistic bacteria, the urease gene of alkalophilic Bacillus pasteurii was transferred into Bacillus subtilis YB-70 which had been selected as a powerful biocontrol agent against root-rotting fungus Fusarium solani. Urease gene was inserted into the HindIII site of pGB215-110 and designated pGU266. The plasmid pGU266 containing urease gene was introduced into the B. subtilis YB-70 by alkali cation transformation system and the urease gene was very stably expressed in the transformant of B. subtilis YB-70(pGU266). The optimal conditions for the transfomation were also evaluated. From the in vitro antibiosis tests against F. solani, the antifungal activity of B. subtilis YB-70 containing urease gene was much efficient than that of the non-transformed strain. Genetic improvement of B. subtilis YB-70 by transfer of urease gene for the efficient control seemed to be responsible for enhanced plant growth and biocontrol efficacy by combining its astibiotic action and ammonia producing ability.

  • PDF

Secretion of Bacillus subtilis Endo-1,4-$\beta$-D-Glucanase in Yeast Using Promoter and Signal Sequence of Glucoamylase Gene (Glucoamylase 유전자의 promoter 와 분비신호서열을 이용한 Bacillus subtilis Endo-1-4$\beta$-D-Glucanase 의 효모에서 분비)

  • 안종석;강대욱;황인규;박승환;박무영;민태익
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.403-409
    • /
    • 1992
  • For the development of a glucanolytic yeast strain. the seceretion of endo-1.4-$\beta$-D-glucanase (CMCase) of Bacillus subtilis was performed in yeast using glucoamylase gene (STA1) of Saccharomyces diastaticus. A 1.7 kb-DNA fragment of STA1 gene containing authentic promoter, signal sequence, threonine serine-rich (TS) region and N-terminal region (98 amino acids) of mature glucoamylase was ligated to YEp 24. E. coli-yeast shuttle vector. And then. CMCase structural gene of B. subtilis was fused in frame with the 1.7 kb-DNA fragment of STA1 gene, resulting in recombinant plasmid pYES('24. Yeast transformant harboring pYESC24 had no CMCase activity. So. we deleted TS region and N-terminal region of mature glucoamylase existing between signal sequence and CMCase structural gene in pYESC24. consequently constructed recombinant plasmid pYESC11. The yeast transformed with the newly constructed recombinant plasmid pYESC11 efficiently secreted CMCase to extracellular medium. After 4 days culture. total CMCase activity of this transformant was 44.7 units/ml and over 93% of total CMCase activity was detected in culture supernatant.

  • PDF

Construction of Pretense-defective Mutant of Bacillus subtilis by Homologous DNA Recombination (상동성 유전자재조합을 이용한 단백질분해효소 비생산 바실러스균주의 구축)

  • Lee, Jin-Tae;An, Bong-Jeun
    • Food Science and Preservation
    • /
    • v.7 no.4
    • /
    • pp.414-417
    • /
    • 2000
  • Competent cell transformation of B. subtilis AC819 was carried out using phenotypic protease-defective(Npr-) DNA of B. subtilis MT-2. An obtained transformant, designated B. subtilis HL-1, was obtained by homologous DNA recombination. Phenotypes of B. subtilis HL-1 were characterized histidine requirement streptomycin-resistance, tetracyclin resistance and non-producing protease. Protoplast transformation frequency of B. subtilis HL-1 by plasmid pUB110 was higher than that of B. subtilis MT-2. From this result, B. subtilis HL-1 is useful for protease gene transformation and thermostable protease gene cloning as a host.

  • PDF

Process Development for Concentration and Stabilization of Recombinant Endoxylanase Expressed in Bacillus subtilis

  • Choi, Young-Rok;Seo, Eun-Jin;Heo, Sun-Yeon;Nam, Soo-Wan;Kwon, Hyun-Ju;Kim, Byung-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.536-539
    • /
    • 2003
  • A strong constitutive $P_{JH}$ promoter from Bacillus sp. was applied to overexpress the endoxylanase gene in Bacillus subtilis. The expression plasmid, pJHKJ4, was designed to contain the $P_{JH}$ promoter and open reading frame of endoxylanase including its own promoter. The plasmid was introduced into B. subtilis DB431 and the resulting transformant was grown on LB glucose medium. The endoxylanase activity in the culture supernatant reached about 140 unit/ml. The enzyme in the supernatant was efficiently concentrated to 70% by two-step treatments of ammonium sulfate saturation and ultrafiltration. The stabilization of concentrated enzyme solution at different storage temperatures was examined with various stabilizers such as NaCl, $CaCl_2$, sucrose, sorbitol, polyethylene glycol, and Tween-80.

  • PDF

Molecular Cloning and Expression of Alkaline Amylase Gene of Alkalophilic Bacillus sp. in Bacillus subtilis and Escherichia coli (알카리성 Bacillus sp.의 호알카리성 amylase 유전자의 Bacillus subtilis와 Escherichia coli로의 cloning과 발현)

  • Bae, Moo;Park, Shin-Hae
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.160-164
    • /
    • 1989
  • A 5.7Kb EcoRI fragment containing alkaline amylase gene of Bacillus sp. AL-8 obtained in the previons experiment (10) was transformed in B. subtilis via plasmid pUB110. The enzymatic proper-ties of the amylase produced by the transformants were Identical to those of the donor strain. Thus, the alkaline amylase activity from the transformant was maximum at pH 10 and 5$0^{\circ}C$. And the enzyme was very stable over the ranges of alkaline pH. In order to determine the location of the alkaline amylase gene within the 5.7Kb DNA fragment, the fragment was subcloned in E. coli. It was found that the alkaline amylase gene was located k EcoRI fragment of 3.7Kb.

  • PDF