• Title/Summary/Keyword: Transform

Search Result 10,406, Processing Time 0.031 seconds

An Efficient Lane Detection Based on the Optimized Hough Transform (최적화된 Hough 변환에 근거한 효율적인 차선 인식)

  • Park Jae-Hyeon;Lee Hack-Man;Cho Jae-Hyun;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.406-412
    • /
    • 2006
  • In this paper, we propose OHT(optimized nough Transform) algorithm for the lane extraction. Input image is changed into 256 gray revel image. Gray level image is separated into background region and road region by using limited horizontal projection value. In separated road area, we apply OHT algorithm. OHT algorithm is characterized as follows. First, the number of candidate pixels is reduced using the outline orientation of the lane. Second, each range of the left and right lane is defined by limited ${\theta}$ Experimental results show that the proposed method is better than Hough Transform.

A combined spline chirplet transform and local maximum synchrosqueezing technique for structural instantaneous frequency identification

  • Ping-Ping Yuan;Zhou-Jie Zhao;Ya Liu;Zhong-Xiang Shen
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.201-215
    • /
    • 2024
  • Spline chirplet transform and local maximum synchrosqueezing are introduced to present a novel structural instantaneous frequency (IF) identification method named local maximum synchrosqueezing spline chirplet transform (LMSSSCT). Namely spline chirplet transform (SCT), a transform is firstly introduced based on classic chirplet transform and spline interpolated kernel function. Applying SCT in association with local maximum synchrosqueezing, the LMSSSCT is then proposed. The index of accuracy and Rényi entropy show that LMSSSCT outperforms the other time-frequency analysis (TFA) methods in processing analytical signals, especially in the presence of noise. Numerical examples of a Duffing nonlinear system with single degree of freedom and a two-layer shear frame structure with time-varying stiffness are used to verify the effectiveness of structural IF identification. Moreover, a nonlinear supported beam structure test is conducted and the LMSSSCT is utilized for structural IF identification. Numerical simulation and experimental results demonstrate that the presented LMSSSCT can effectively identify the IFs of nonlinear structures and time-varying structures with good accuracy and stability.

Correction of Rotated Objects in Medical Images Using the Mojette Transform (모젯 변환을 이용한 의료 영상의 회전 물체 보정)

  • Jung, Hyang-Mi;Kim, Ji-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1341-1348
    • /
    • 2012
  • In this paper, an efficient scheme for correcting rotated objects in medical images using the Mojette transform is presented. The Mojette transform is a kind of discrete Radon transform, where the transform domain is represented by a set of projections. The Mojette transform currently studied in the image compression area is modified for detecting the rotation angle of objects in medical images. First, in order to find accurate rotation angle, the projection value in the Mojette transform is determined by using pixels on the projection line and in addition the linear interpolation of pixels adjacent to the line. Second, at each projection angle, only one projection is implemented for reducing the amount of the calculation in the process of the Mojette transform. Finally, the projection in the Mojette transform is carried out at the predetermined ROI(Region Of Interest) at which the objects are not cropped or added by rotating the image. The simulation results show that the proposed method has good performance for correcting the rotation angle in medical images.

Condition Monitoring in Gear System Using Spike Wavelet Transform (스파이크 웨이블렛 변환을 이용한 기어 시스템의 건전성 감시)

  • 이상권;심장선
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.21-27
    • /
    • 2001
  • Impulsive sound and vibration signals in gear system are often associated with their faults. Thus these impulsive sound and vibration signals can be used as indicators in condition monitoring of gear system. The traditional continuous wavelet transform has been used for detection of impulsive signals. However, it is often difficult for the continuous wavelet transform to identify spikes at high frequency and meshing frequencies at low frequency simultaneously since the continuous wavelet transform is to apply the linear scaling (a-dilation) to the mother wavelet. In this paper, the spike wavelet transform is developed to extract these impulsive sound and vibration signals. Since the spike wavelet transform is to apply the non-linear scaling, it has better time resolution at high frequency and frequency resolution at low frequency than that of the continuous wavelet transform respectively. The spike wavelet transform can be, therefore, used to detect fault position clearly without the loss of information for the damage of a gear system. The spike wavelet transform is successfully is applied to detection of the gear fault with tip breakage.

  • PDF

A Novel Detection Technique for Voltage Sag in Distribution Lines Using the Wavelet Transform

  • Ko, Young-Hun;Kim, Chul-Hwan;Ahn, Sang-Pil
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.130-138
    • /
    • 2003
  • This paper presents a discrete wavelet transform approach for determining the beginning and end times of voltage sags. Firstly, investigations in the use of some typical mother wavelets, namely Daubechies, Symlets, Coiflets and Biorthogonal are carried out and the most appropriate mother wavelet is selected. The proposed technique is based on utilizing the maximum value of Dl (at scale 1) coefficients in multiresolution analysis (MRA) based on the discrete wavelet transform. The results are compared with other methods for determining voltage sag duration, such as the Root Mean Square (RMS) voltage and Short Time Fourier Transform (STFT) methods. It is shown that the voltage sag detection technique based on the wavelet transform is a satisfactory and reliable method for detecting voltage sags in power quality disturbance analysis.

Feature Extraction Using Trace Transform for Insect footprint Recognition (곤충 발자국 패턴 인식을 위한 Trace Transform 기반의 특징값 추출)

  • Shin, Bok-Suk;Cha, Eui-Young;Cho, Kyoung-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.313-316
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, 인식의 기본 단위인 세그먼트를 자동 추출하는 기법과 Trace transform을 이용하여 발자국 인식에 필요한 특징을 추출하는 기법을 제안하였다. Trace transform 방법을 이용하면 패턴의 크기, 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 특징값을 도출하기 위한 첫 번째 단계로는 추출된 세그먼트에 대한 Trace transform을 통해 새로운 Trace 이미지를 생성시킨다. 그런 다음 병렬로 표현되는 trace-line을 따라 특성 함수에 의해 특징들이 일차적으로 도출되고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 2가지 서로 다른 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 크기, 이동, 회전, 반사에 관계없이 인식에 적합한 특징값들이 추출됨을 확인할 수 있었다.

  • PDF

2-D Large Inverse Transform (16×16, 32×32) for HEVC (High Efficiency Video Coding)

  • Park, Jong-Sik;Nam, Woo-Jin;Han, Seung-Mok;Lee, Seong-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.203-211
    • /
    • 2012
  • This paper proposes a $16{\times}16$ and $32{\times}32$ inverse transform architecture for HEVC (High Efficiency Video Coding). HEVC large transform of $16{\times}16$ and $32{\times}32$ suffers from huge computational complexity. To resolve this problem, we proposed a new large inverse transform architecture based on hardware reuse. The processing element is optimized by exploiting fully recursive and regular butterfly structure. To achieve low area, the processing element is implemented by shifters and adders without multiplier. Implementation of the proposed 2-D inverse transform architecture in 0.18 ${\mu}m$ technology shows about 300 MHz frequency and 287 Kgates area, which can process 4K ($3840{\times}2160$)@ 30 fps image.

Time Delay Estimation using Wavelet Transform (웨이블릿 변환을 이용한 시간 지연 추정법)

  • Kim Doh-Hyoung;Park Youngjin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.165-168
    • /
    • 2000
  • A fast estimation method using wavelet transform for a time delay system is proposed. Main point of this method is to get the wavelet transform of the correlation between the input signal and delayed signal using transformed signals. But wavelet transform using Haar wavelet functions has basis with different phases and can offers a bisection method to estimate a time delay of a signal. Selective computation of the transform of correlation is performed and the computational complexity is reduced. Computational order of this method is O(N log N) and it is much love. than a simple correlation esimation when the length of signal is long.

  • PDF

Noise Attenuation of Marine Seismic Data with a 2-D Wavelet Transform (2-D 웨이브릿 변환을 이용한 해양 탄성파탐사 자료의 잡음 감쇠)

  • Kim, Jin-Hoo;Kim, Sung-Bo;Kim, Hyun-Do;Kim, Chan-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1309-1314
    • /
    • 2008
  • Seismic data is often contaminated with high-energy, spatially aliased noise, which has proven impractical to attenuate using Fourier techniques. Wavelet filtering, however, has proven capable of attacking several types of localized noise simultaneously regardless of their frequencies. In this study a 2-D stationary wavelet transform is used to decompose seismic data into its wavelet components. A threshold is applied to these coefficients to attenuate high amplitude noise, followed by an inverse transform to reconstruct the seismic trace. The stationary wavelet transform minimizes the phase-shift errors induced by thresholding that occur when the conventional discrete wavelet transform is used.

VLSI Architecture of Fast Jacket Transform (Fast Jacket Transform의 VLSI 아키텍쳐)

  • 유경주;홍선영;이문호;정진균
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.769-772
    • /
    • 2001
  • Waish-Hadamard Transform은 압축, 필터링, 코드 디자인 등 다양한 이미지처리 분야에 응용되어왔다. 이러한 Hadamard Transform을 기본으로 확장한 Jacket Transform은 행렬의 원소에 가중치를 부여함으로써 Weighted Hadamard Matrix라고 한다. Jacket Matrix의 cocyclic한 특성은 암호화, 정보이론, TCM 등 더욱 다양한 응용분야를 가질 수 있고, Space Time Code에서 대역효율, 전력면에서도 효율적인 특성을 나타낸다 [6],[7]. 본 논문에서는 Distributed Arithmetic(DA) 구조를 이용하여 Fast Jacket Transform(FJT)을 구현한다. Distributed Arithmetic은 ROM과 어큐뮬레이터를 이용하고, Jacket Watrix의 행렬을 분할하고 간략화하여 구현함으로써 하드웨어의 복잡도를 줄이고 기존의 시스톨릭한 구조보다 면적의 이득을 얻을 수 있다. 이 방법은 수학적으로 간단할 뿐 만 아니라 행렬의 곱의 형태를 단지 덧셈과 뺄셈의 형태로 나타냄으로써 하드웨어로 쉽게 구현할 수 있다. 이 구조는 입력데이타의 워드길이가 n일 때, O(2n)의 계산 복잡도를 가지므로 기존의 시스톨릭한 구조와 비교하여 더 적은 면적을 필요로 하고 FPGA로의 구현에도 적절하다.

  • PDF