• Title/Summary/Keyword: Transfer-in

Search Result 25,906, Processing Time 0.061 seconds

NUMERICAL STUDY ON COMBINED HEAT TRANSFER IN NIR HEATING CHAMBER (근적외선 열풍기의 복합열전달에 관한 수치적 연구)

  • Choi, H.K.;Yoo, G.J.;Kim, I.H.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • Numerical analysis is carried out for combined heat transfer in an indirected NIR(Near Infrared Ray) heating chamber. Reynolds number and shapes of absorbed cylinder are known as important parameters on the combined heat transfer effects. Reynolds number based on the outer diameter of the cylinder is varied from $10^3$ to $3{\times}10^5$. Four difference heat transfer regimes are observed: forced convection and radiative heat transfer on the outer surface of the cylinder, pure conduction in the cylinder body, pure natural convection and radiation between lamp surface and inner surface of the cylinder, and radiation from the lamp. Flow and temperature characteristics are presented with iso-contour lines for the absorbed circular and elliptic cylinders to compare their differences. The convective and radiative heat transfer fluxes are also compared with different Reynolds numbers. As usual, Reynolds number is an important factor to estimate increasing convective heat transfer as it increases. The shape of absorbed cylinder results overall heat transfer rates remain unchanged.

Heat Transfer Coefficient and Shear Factor Subjected to Both Oscillating Flow and Oscillating Pressure in Pulse Tubes (주기적인 유동과 압력의 변화를 수반하는 맥동관의 열전달계수와 전단계수)

  • Jeong, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.220-227
    • /
    • 2007
  • Heat transfer and momentum transfer under conditions of both oscillating flow and oscillating pressure within pulse tubes show very different behavior from those for steady state conditions. The analytic solutions of axial velocity and temperature of the gas within pulse tubes were obtained by assuming that the variations in pressure and temperature were purely sinusoidal and small. The shear stress and the heat flux at the tube wall obtained from the solutions are expressed in terms of the cross-sectional averaged velocity, the difference between mean temperature and instantaneous cross-sectional averaged temperature and the difference between mean pressure and instantaneous pressure. It is shown that the complex shear factor, which has been applied to momentum transfer of incompressible oscillating flow, and the complex Nusselt number, which has been applied to either heat transfer with oscillating pressure only or heat transfer of incompressible oscillating flow, could also be used for momentum transfer and heat transfer subjected to both oscillating flow and oscillating pressure, respectively.

Numerical study on the heat transfer characteristics of the condenser for the car air-conditioners (자동차 공조용 응축기의 열전달특성에 관한 수치적 연구)

  • 배성열;정백영;김일겸;박상록;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.315-323
    • /
    • 1998
  • This paper contains a verification of simulation program to predict the capacity of a condenser used in car air-conditioners. Verification of simulation program is carried out with the comparison error between experiment and simulation bounds within 3.5%. The present investigation shows the results for heat transfer rates of condenser under different operating conditions, such as velocity and degree of superheat. The range of front velocity of air is 1∼5m/s. As the front velocity is increased, the heat transfer rate of condenser is largely increased at a low velocity range. In a meanwhile, heat transfer rate of condenser is almost constant in a range of velocity over 3m/s. As for the effect of inlet pressure of refrigerant on the heat transfer rate, we obtained the similar trend of heat transfer rates as like varying the front velocity, Also we have calculated the heat transfer rates with varying inlet superheats of refrigerant, the larger the superheat is, the more heat transfer rate is obtained.

  • PDF

Condensation heat transfer of R407C and R410A in a horizontal smooth tube (R407C 및 R410A의 수평원관내 응축열전달)

  • 서정현;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.633-641
    • /
    • 1999
  • Experiments were carried out to investigate the condensation heat transfer characteristics for R22 and its alternatives, R407C (R32/125/134a, 23/25/52wt%) and R410A (R32/125, 50/50wt%). A concentric tube heat exchanger was made to conduct condensation heat transfer tests. Mass flux and saturation temperature of refrigerants at the test section inlet were varied to get the corresponding heat transfer coefficients. Serial and parallel input of secondary fluid (water) were applied to the test subsections. Compared with existing correlations of condensation heat transfer, experimental heat transfer coefficients obtained in this study were generally higher than the predicted values, and mean absolute deviations from several correlations were shown. Wall subcooling was introduced to get a new correlation for condensation heat transfer coefficients by modifying Shah's equation. The RMS deviation of the measured heat transfer coefficients from the new correlation in this study for R22 is 9.9% and that for R407C and R410A are 10.2% and 14.6%, respectively.

  • PDF

Numerical Analysis on the Thermal and Fluid in Air Conditioning Duct for Marine Offshore (해양 구조물용 공조덕트 열유동에 관한 수치해석)

  • Yi, Chung-Seob;Lee, Byung-Ho;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.23-29
    • /
    • 2018
  • This study is about the distribution of heat transfer in air conditioning ducts used for marine vessels and oil drilling platforms. As the convective heat transfer coefficient increased, heat transfer was conducted dynamically to inside as it exited to the outlet of duct. The experiment was to determine if the amount of heat transfer generated at the duct exit increased as the convective heat transfer coefficient increased. When the convective heat transfer coefficient was low, the temperature of the duct showed a relatively high temperature difference between the outside and inside of the duct due to the temperature influence of the internal fluid. In case of temperature distribution generated the volume of the duct along the change of the convective heat transfer coefficient, the temperature descended as heat transfer was promoted and the convective heat transfer coefficient increased.

Research on heat transfer coefficient of supercritical water based on factorial and correspondence analysis

  • Xiang, Feng;Tao, Zhou;Jialei, Zhang;Boya, Zhang;Dongliang, Ma
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1409-1416
    • /
    • 2020
  • The study of heat transfer coefficient of supercritical water plays an important role in improving the heat transfer efficiency of the reactor. Taking the supercritical natural circulation experimental bench as the research object, the effects of power, flow, pipe diameter and mainstream temperature on the heat transfer coefficient of supercritical water were studied. At the same time, the experimental data of Chen Yuzhou's supercritical water heat transfer coefficient was collected. Through the factorial design method, the influence of different factors and their interactions on the heat transfer coefficient of supercritical water is analyzed. Through the corresponding analysis method, the influencing factors of different levels of heat transfer coefficient are analyzed. It can be found: Except for the effects of flow rate, power, power-temperature and temperature, the influence of other factors on the natural circulation heat transfer coefficient of supercritical water is negligible. When the heat transfer coefficient is low, it is mainly affected by the pipe diameter. As the heat transfer coefficient is further increased, it is mainly affected by temperature and power. When the heat transfer coefficient is at a large level, the influence of the flow rate is the largest at this time.

Heat Transfer in the Combustion Chamber for the Compact Hot-Water Boiler (콤팩트 온수 보일러 연소실의 열전달 특성)

  • Cho, Jung-Hwan;Seo, Tae-Beom;Kim, Wook-Jung;Kim, Chang-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.459-464
    • /
    • 2001
  • A mathematical model has been developed to describe the turbulent and reversed flow with convective heat transfer in a cylindrical combustion chamber. By using the mathematical model for high temperature flow enables the trends in overall heat transfer rates to be predicted. The model was applied to the design of the combustion chamber. The influences of the size of air inlet and inlet velocity were investigated for process optimization. Through modelling work it is found that the heat transfer rate to the chamber wall may be enhanced by adjusting the air flow and heat transfer pattern through selecting the air inlet condition. Internal plate has less influence to the heat transfer characteristics.

  • PDF

A Numerical Study on Heat and Mass Transfer in a Falling Film of Vertical Plate Absorber Cooled by Air (공랭형 수직평판 흡수기 액막에서의 열 및 물질전달에 관한 수치적 연구)

  • 김선창;오명도;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1071-1082
    • /
    • 1995
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of the LiBr aqueous solution which is cooled by cooling air. Heat flux at the wall is specified in terms of the heat transfer coefficient of cooling air and the cooling air temperature. Effects of operating conditions, such as the heat transfer coefficient, the cooling air temperature, the system pressure and the solution inlet concentration have been investigated in view of the local absorption mass flux and the total mass transfer rate. Effects of film thickness and film Reynolds number on the heat and mass transfer coefficients have been also estimated. Analyses for the constant wall temperature condition have been also carried out to examine the reliability of present numerical method by comparing with previous investigations.

Enhancement of Heat and Mass Transfer for a Vertical Type Absorber (수직흡수기의 열 및 물질전달 촉진)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.362-370
    • /
    • 1998
  • Absorption systems require a heat source for working but they have a great merit in that relatively low-temperature and low-quality types of thermal energy such as solar heat and exhaust heat can be effectively utilized as heat source. However details research related to absorbers which have a great effect on performances has been rarely done and thus there has been a strong hope for positive developments to improve their efficiencies. This paper describes absorption experiments made with different inside tube diameters and shapes. The purpose of this study is to acquire basic knowledge about heat and mass transfer in a falling film type absorber with vertical inner tubes. Heat and mass transfer were measured for water vapor absorption into a water/LiBr solution flowing down an absorber of vertical inner tubes. As a result absorption acceleration tube compares bare tube and heat transfer improved by order of insert spring tube corrugated tube grooved tube. And the acceleration that is good provided in inserting spring tube for both sides of heat and mass transfer.

  • PDF