• Title/Summary/Keyword: Transfer resistance

Search Result 1,288, Processing Time 0.028 seconds

Transformation of Populus alba $\times$Populus glandulosa Using Phosphinothricin Acetyltransferase Gene (Phosphinothricin acetyltransferase 유전자를 이용한 현사시의 형질전환)

  • 오경은;양덕춘;문흥규;박재인
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.163-169
    • /
    • 1999
  • This study was conducted to produce herbicide resistant plants by transferring phosphinothricin acetyltransferase (PAT) gene into Populus alba $\times$ Populus glandulosa No .3 using Agrobacterium tumefaciens MP 90/PAT. Leaf segments from in vitro grown shoots of hybrid poplar No. 3 were soaked in a AB medium containing Agrobacterium tumefaciens MP 90/PAT for 10 min and cocultivated for 2 days on MS medium containing 1.0 mg/L 2,4-D and 0.2mg/L kinetin (CIM). Putative transformed calli could be selected after cocultivation of leaf segments on CIM supplemented with 50mg/L kanamycin and 500mg/L cefotaxime for 3 weeks. The selected calli were cultured on CIM supplemented with 50 mg/L kanamycin and 500 mg/L cefotaxime for 5~8 weeks before transfer to WPM containing 1.0mg/L zeatin, 0.1mg/L BAP, 50 mg/L kanamycin and 500mg/L cefotaxime for shoot regeneration. Shoots were regenerated from the callus after 4 week cultivation, and the regenerants were grown on the same medium for 7~l0 weeks. The plants rooted on 1/2 WPM containing 0.2 mg/L IBA and 50 mg/L kanamycin. To confirm the gene insertion into plants, GUS activity was detected by histochemical assay in the transformed plants. Finally, the presence of both NPT II and PAT genes from the transgenic plants were confirmed by PCR amplification with the gene specific primers and subsequent PCR-Southern blot with DIG-labeled PAT gene probe. After acclimatization in pots for 4 weeks, the plants were sprayed by 3 mL/L of Basta to test resistance to the herbicide. The transgenic plants remained green, whereas all the control plants died after one week.

  • PDF

Synthesis of High-Quality Monolayer Graphene on Copper foil by Chemical Vapor Deposition

  • Lee, Su-Il;Kim, Yu-Seok;Song, U-Seok;Jo, Ju-Mi;Kim, Seong-Hwan;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.351-352
    • /
    • 2011
  • 그래핀(Graphene)은 2차원 평면구조의 $sp^2$ 탄소 결합으로 이루어진 물질이다. 일반적으로 그래핀은 탄소 원자 한층 정도의 얇은 두께를 가지면서 강철의 100배 이상 높은 강도, 다이아몬드보다 2배 이상 뛰어난 열 전도성, 그리고 규소보다 100배 이상 빠른 전자이동도 등의 매우 우수한 특성을 지닌다. 그래핀을 합성하거나 얻는 방법에는, 기계적 박리법(Micro mechanical exfoliation), 산화흑연(graphite oxide)을 이용한 reduced graphene oxide(RGO)방법과 탄화 규소(SiC)를 이용한 epitaxial growth 방법 등이 있지만, 대 면적화가 어렵거나 구조적 결함이 큰 문제점이 있다. 반면, 탄화수소(hydrocarbon)를 탄소 공급원으로 하는 열화학 기상 증착법(Thermal chemical vapor deposition, TCVD)은 구조적 결함이 상대적으로 적으면서 대 면적화가 가능하다는 이점 때문에 최근 가장 많이 이용되고 있는 방법이다. TCVD를 이용, 니켈, 몰리브덴, 금, 코발트 등의 금속에서 그래핀 합성연구가 보고되었지만, 대부분 수 층(fewlayer)의 그래핀이 합성되었다. 하지만, 구리 촉매를 이용하는 것이 단층 그래핀 합성에 매우 효율적이라는 연구결과가 보고되었다. 구리의 경우, 낮은 탄소융해도(solubility of carbon) 때문에 표면에서 self limiting 과정을 통하여 단층 그래핀이 합성된다. 그러나 단층 그래핀 일지라도 면저항(sheet resistance)이 매우 높고, 이론적 계산값에 비해 전자이동도(electron mobility)가 낮게 측정된다. 이러한 원인은 구조적 결함에서 기인된 것으로써 산업으로의 응용을 어렵게 만들기 때문에 양질의 단층 그래핀 합성연구는 필수적이다[1,2]. 본 연구에서는 TCVD를 이용하여 구리 포일(25 ${\mu}m$, Alfa Aeser) 위에 메탄가스를 탄소공급원으로 하여 수소를 함께 주입하고, 메탄가스의 양과 합성시간, 열처리 시간을 조절하면서 균일한 단층 그래핀을 합성하였다. 합성된 그래핀을 $SiO_2$ (300 nm)기판위에 전사(transfer)후 라만 분광법(raman spectroscopy)과 광학 현미경(optical microscope)을 통하여 분석하였다. 그 결과, 열처리 시간이 증가할수록 촉매로 사용된 구리 포일의 grain size가 커짐을 확인하였으며, 구리 포일 위에 합성된 그래핀의 grain size는, 구리 포일의 grain size에 의존하여 커짐을 확인하였다. 또한 동일한 grain 내의 그래핀은 균일한 층으로 합성되었다. 이는 기계적 박리법, RGO 방법, epitaxial growth 방법으로 얻은 그래핀과 비교하여 매우 뛰어난 결정성을 지님이 확인되었다. 본 연구를 통하여 면적이 넓으면서도 결정성이 매우 뛰어난 양질의 단층 그래핀 합성 방법을 확립하였다.

  • PDF

Preparation and Characteristics of Heterogeneous Cation Exchange Membrane : 1. Mixing Ratio of Matrix and Ion Exchange Resin (PE계 불균질 양이온 교환막의 제조와 특성:1.결합제와 이온교환수지의 비율에 따른 영향)

  • Yang, Hyun S.;Cho, Byoung H.;Kang, Bong K.;Lee, Tae W.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1132-1141
    • /
    • 1996
  • Heterogeneous cation exchange membrane(HCEM) was prepared with LLDPE(Linear Low Density Poly-ethylene) as binder, powdered cation exchange resins($diameter{\leq}149{\mu}m$) as ion-exchange material and glycerol as additive for electrodialysis and electrodeionization system. The weight ratio of (binder/ion exchange)/glycerol was (60%/40%)/5%, (55%/45%)/5%, (50%/50%)/5% and (40%/60%)/5%. The characterization of prepared HCEM was evaluated on mechanical, electrochemical, morphology and ion permeable properties. It was compared with commercial membrane. Electrochemical properties of HCEM of (50%/50% )/5% were very similar to value of IONPURE(commercial membrane), in which ion exchange capacity, ion transfer number and membrane resistance were to be 1.733meq/g, 0.96 and $16.08{\Omega}/cm^2$, respectively. Ion permeability of the membrane was better than that of IONPURE membrane. Compared with IONPURE membrane, the HCEM had a higher tensile strength and lower elongation and modulus, in which HCEM had tensile strength of $62.33kg/cm^2$, elongation of 87.42% and modulus of $658.53kg/cm^2$. The HCEM of (50%/50% )15% was optimum combination.

  • PDF

The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 (Fe을 도핑한 Li[Ni0.575Co0.1Mn0.325]O2의 구조적인 안정성 및 전기화학적 특성)

  • Yang, Su-Bin;Yoo, Gi-Won;Jang, Byeong-Chan;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2014
  • In this study, a positive-electrode material in a lithium secondary battery $Li[Ni_{0.575}Co_{0.1}Mn_{0.325}]O_2$ was synthesized as precursor by co-precipitation. Cathode material was synthesized by adding iron. The synthesized cathode material was analyzed by scanning electron microscope and x-ray diffraction. The analysis of x-ray diffraction showed that the a-axis and c-axis is increased by doping iron. And $I_{(003)}/I_{(104)}$ is increased and $I_{(006)}+I_{(102)}/I_{(101)}$ is decreased. Through this result, it was confirmed that the structural stability is improved. And impedance measurements show that the charge transfer resistance ($R_{ct}$) is lowered by doping iron. Consequently, electrochemical properties are improved by doping iron. In particular, the cycle characteristics are improved at a high temperature condition (328 K). Structural stabilities are contributing to the cycle properties.

Influence of Precursor on the Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2 Cathode for the Lithium Secondary Battery (전구체의 물성에 따른 리튬 2차전지용 Li(Ni0.5Co0.2Mn0.3)O2의 전기화학적 특성 변화)

  • Kang, Donghyun;Arailym, Nurpeissova;Chae, Jeong Eun;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • The one of the cathode material, $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$, was synthesized by the precursor, $Ni_{0.5}Co_{0.2}Mn_{0.3}(OH)_2$, from the co-precipitation method and the morphologies of the primary particle of precursors were flake and needle-shape by controlling the precipitation parameters. Identical powder properties, such as particle size, tap density, chemical composition, were obtained by same process of lithiation and heat-treatment. The relation between electrochemical performances of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ and the primary particle morphology of precursors was analyzed by SEM, XRD and EELS. In the $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ cathode from the needle-shape precursor, the primary particle size was smaller than that from flake-shape precursor and high Li concentration at grain edge comparing grain center. The cycle and rate performances of the cathode from needle-shape precursor shows superior to those from flake-shape precursor, which might be attributed to low charge-transfer resistance by impedance measurement.

Skin Friction Mobilized on Pack Micropiles Subjected to Uplift Force (인발력을 받는 팩마이크로파일의 주면마찰력)

  • Hong, Won-Pyo;Cho, Sam-Deok;Choi, Chang-Ho;Lee, Choong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.19-29
    • /
    • 2012
  • Pack micropiles were recently developed to improve pile capacity of general micropiles. Pack micropiles were made by warping thread bar or steel pipe of general micropile by geotexlile pack and grouting inside the pack with pressure. According to the pressure, the boring hole could be enlarged. A series of pile uplift tests were performed on three micropiles. Two out of the three piles were the pack micropiles and the other was the general micropile, in which a thread bar was used in the boring hole. According to the pressure applied to the pack micropiles, the diameter of boring hole was enlarged from 152 mm to 220 mm. Unit skin friction mobilized on side surfaces of micropiles increased with displacement of pile head and reached on a constant value, which represents that the relative displacement between piles (or thread bar) and soils was reached on critical state. And the uplift resistance of pack micropile was higher than that of general micropile. Two reasons can be considered: One is that the frictional surface increases due to enlarging diameter of boring holes and the other is that the unit skin friction could increase due to compressing effect of surrounding soils by soil displacement as much as the enlarging volume of boring hole. The compression effect appeared at deeper layer rather than surface layer. The unit skin friction mobilized on micropiles with small diameter was higher than the ones on large bored piles.

Development of Flat Plate Type Small Cooling Device (Flat Plate Type 소형 냉각소자 개발)

  • Moon, Seok-Hwan;Hwang, Gunn;You, In-Kyu;Cho, Kyoung-Ik;Yu, Byoung-Gon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.170-174
    • /
    • 2008
  • Recently, a problem related to the thermal management in portable electronic and telecommunication devices is becoming issued. That is due to the trend of slimness of the devices, so it is not easy to find the optimal thermal management technology for the devices. From now on, a pressed circular type cooling device has been mainly used, however the cooling device with thin thickness is becoming needed by the inner space constraint. In the present study, the silicon and metal flat plate type cooling device with the separated vapor and liquid flow path was designed and fabricated. Through the experimental study, the normal isothermal characteristic by vapor-liquid phase change was confirmed and the cooling device with 70mm of total length showed 6.8W of the heat transfer rate within the range of $4{\sim}5^{\circ}C$/W of thermal resistance. In the meantime, the metal cooling device was developed for commercialization. The device was designed to have all structures of evaporator, vapor flow path, liquid flow path and condenser in one plate. And an envelope of that could be completed by combining the two plates of same structure and size. And the simplicity of fabrication process and reduction of manufacturing cost could be accomplished by using the stamping technology for fabricating large flow paths relatively. In the future, it will be possible to develop the commercialized cooling device by revising the fabrication process and enhancing the thermal performance of that.

  • PDF

Absorption Characteristics of Carbon Dioxide by Water-lean Diethylenetriamine Absorbents Mixed with Physical Solvents (물리 흡수제를 포함한 디에틸렌트리아민(Diethylenetriamine) 저수계 흡수제에서의 이산화탄소 흡수 특성)

  • Lee, Hwa Young;Seok, Chang Hwan;You, Jong-Kyun;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • In this work, N-methyl-2-pyrrolidone (NMP) was added into diethylenetriamine (DETA) aqueous solution for high $CO_2$ loading via phase splitting of absorbents during $CO_2$ absorption. Immiscible two phases were formed in the range of more than 30 wt% of NMP in 2 M DETA + NMP + water absorbents because of low solubility of DETA-carbamate in NMP solution. As the composition of NMP in the absorbents increased, the difference of $CO_2$ loading between each phase increased and the volume of bottom phase decreased. In $CO_2$ absorption in packed column by 2 M DETA + NMP + water absorbents, the absorption rate decreased in the range of more than 40 wt% of NMP. It is due to the increasing of mass transfer resistance in liquid film of absorbents at the high concentration of NMP. DETA + NMP + water absorbent is expected as the promising one for reducing the regeneration energy of absorbents according to volume reduction of $CO_2-rich$ phase.

Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor (2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극)

  • Jang, In-Young;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.425-431
    • /
    • 2005
  • New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of $1.34{\Omega}$, AC-ESR of $0.36{\Omega}$, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.

Degradation of Polyvinyl Alcohol in Dye-Processing Wastewater by Agar-Acrylamide Microbial Immobilization Method (한천-아크릴아마이드 미생물 고정화법에 의한 폐수 중 폴리비닐알콜의 분해)

  • 김재훈;김정목조무환
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.241-248
    • /
    • 1995
  • For the treatment of poorly biodegradable polyvinyl alcohol(PVA) in dye-processing wastewater, immobilized microbial beads were prepared by uslng agar-acrylamide method. PVA removal efficiency for the synthetic wastewater was 85% at the PVA volume loading rate of $3.1g/\ell$.day. In case of real desizing wastewater, PVA removal efficiency was 81.3% at the PVA volume loading rate of $3.25g/\ell$.day. In observation of cross section of immobilized bead passed 5 months with diameter of 2.4mm, the growth of cell was limited by the resistance of substrate and oxygen transfer for the inners region of more than 48% of bead radius from the surface. It was estimated that 70% of total removed PVA was degraded by the immobilized cells in the continuous immobilized reactor. Substrate utilization rate in the suspended reactor was decreased with increasing dilution rates above 0.083 hr-1, but that in the immobilized reactor was increased with increasing dilution rates up to 0.125hr-1. The substrate removal efficiency of immobilized reactor was much superior to that of suspended reactor with increasing dilution rates. Saturation constant of substrate utilization rate equation, Ks was $6.6 g PVA/\ell$, and maximum specific substrate utilization. k was 0.175g PVA/g cell.hr

  • PDF