• Title/Summary/Keyword: Transfer rate-based Congestion Control

Search Result 27, Processing Time 0.019 seconds

UDT Parallel Transfer Technologies Adaptive to Network Status In High Speed Network (고속네트워크에서 네트워크 혼잡상태에 적응적인 UDT 병렬전송 기법)

  • Park, Jong Seon;Cho, Gi Hwan
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.51-59
    • /
    • 2013
  • With increasing transmission speed of backbone networks, it is getting to provide enough available bandwidth. However, the bandwidth is not effectively utilized in volumetric data transfer. This mainly comes from the transmission protocol, TCP, which is used for most applications. TCP is inherently difficult to adapt the available bandwidth because of it's own characteristic of transfer mechanism. UDT is a prominent application level data transfer protocol which is targeting high speed network. In this paper, we propose UDT parallel transfer technologies which is adaptive to network status and then evaluate their performance in two points of view. Firstly, we measure data transfer rate of UDT with rate congestion control methods, and compare them with basic UDT. Secondly, we apply parallel transfer technologies adapted to network status, and measure their performance. Experimental results showed that UDT rate congestion control method outperforms UDT with 106% improvement in RTT 100ms section set with jitter 30ms. In addition, performance of parallel transfer with rate congestion control method showed 107% improvement than that of parallel transfer in RTT 400ms section set with jitter 20ms.

  • PDF

A Performance Improvement Method with Considering of Congestion Prediction and Packet Loss on UDT Environment (UDT 환경에서 혼잡상황 예측 및 패킷손실을 고려한 성능향상 기법)

  • Park, Jong-Seon;Lee, Seung-Ah;Kim, Seung-Hae;Cho, Gi-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.69-78
    • /
    • 2011
  • Recently, the bandwidth available to an end user has been dramatically increasing with the advancing of network technologies. This high-speed network naturally requires faster and/or stable data transmission techniques. The UDT(UDP based Data Transfer protocol) is a UDP based transport protocol, and shows more efficient throughput than TCP in the long RTT environment, with benefit of rate control for a SYN time. With a NAK event, however, it is difficult to expect an optimum performance due to the increase of fixed sendInterval and the flow control based on the previous RTT. This paper proposes a rate control method on following a NAK, by adjusting the sendInterval according to some degree of RTT period which calculated from a set of experimental results. In addition, it suggests an improved flow control method based on the TCP vegas, in order to predict the network congestion afterward. An experimental results show that the revised flow control method improves UDT's throughput about 20Mbps. With combining the rate control and flow control proposed, the UDT throughput can be improved up to 26Mbps in average.

TCP Congestion Control of Transfer Rate-based in End-to-End Network Systems (종단간 네트워크 시스템에서 전송율 기반 TCP 혼잡제어)

  • Bae, Young-Geun;Yoon, Chan-Ho;Kim, Gwang-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.1 no.2
    • /
    • pp.102-109
    • /
    • 2006
  • In this paper, we improve the performance of bidirectional TCP connection over end-to-end network that uses transfer rate-based flow and congestion control. The sharing of a common buffer by TCP packets and acknowledgement has been known to result in an effect called ack compression, where acks of a connection arrive at the source bunched together, resulting in unfairness and degraded throughput. The degradation in throughput due to bidirectional traffic can be significant. For example, even in the simple case of symmetrical connections with adequate window size, the connection efficiency is improved about 20% for three levels of background traffic 2.5Mbps, 5.0Mbps and 7.5Mbps. Otherwise, the throughput of jitter is reduced about 50% because round trip delay time is smaller between source node and destination node. Also, we show that throughput curve is improved with connection rate algorithm which is proposed for TCP congestion avoidance as a function of aggressiveness threshold for three levels of background traffic 2.5Mbps, 5Mbps and 7.5Mbps.

  • PDF

An implementation of the dynamic rate leaky bucket algorithm combined with a neural network based prediction (신경회로망 예측기법을 결합한 Dynamic Rate Leaky Bucket 알고리즘의 구현)

  • 이두헌;신요안;김영한
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.2
    • /
    • pp.259-267
    • /
    • 1997
  • The advent of B-ISDN using ATM(asynchronous transfer mode) made possible a variety of new multimedia services, however it also created a problem of congestion control due to bursty nature of various traffic sources. To tackle this problem, UPC/NPC(user parameter control/network parameter control) have been actively studied and DRLB(dynamic rate leaky bucket) algorithm, in which the token generation rate is changed according to states of data source andbuffer occupancy, is a good example of the UPC/NPC. However, the DRLB algorithm has drawbacks of low efficiency and difficult real-time implementation for bursty traffic sources because the determination of token generation rate in the algorithm is based on the present state of network. In this paper, we propose a more plastic and effective congestion control algorithm by combining the DRLB algorithm and neural network based prediction to remedy the drawbacks of the DRLB algorithm, and verify the efficacy of the proposed method by computer simulations.

  • PDF

A Survey on Congestion Control for CoAP over UDP

  • Lim, Chansook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.17-26
    • /
    • 2019
  • The Constrained Application Protocol (CoAP) is a specialized web transfer protocol proposed by the IETF for use in IoT environments. CoAP was designed as a lightweight machine-to-machine protocol for resource constrained environments. Due to the strength of low overhead, the number of CoAP devices is expected to rise rapidly. When CoAP runs over UDP for wireless sensor networks, CoAP needs to support congestion control mechanisms. Since the default CoAP defines a minimal mechanism for congestion control, several schemes to improve the mechanism have been proposed. To keep CoAP lightweight, the majority of the schemes have been focused mainly on how to measure RTT accurately and how to set RTO adaptively according to network conditions, but other approaches such as rate-based congestion control were proposed more recently. In this paper, we survey the literature on congestion control for CoAP and discuss the future research directions.

A Study on an Adaptive UPC Algorithm Based on Traffic Multiplexing Information in ATM Networks (ATM 망에서 트래픽 다중화 정보에 의한 적응적 UPC 알고리즘에 관한 연구)

  • Kim, Yeong-Cheol;Byeon, Jae-Yeong;Seo, Hyeon-Seung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2779-2789
    • /
    • 1999
  • In this paper, we propose a new neural Buffered Leaky Bucket algorithm for preventing the degradation of network performance caused by congestion and dealing with the traffic congestion in ATM networks. We networks. We justify the validity of the suggested method through performance comparison in aspects of cell loss rate and mean transfer delay under a variety of traffic conditions requiring the different QoS(Quality of Service). also, the cell scheduling algorithms such as DWRR and DWEDF used for multiplexing the incoming traffics are induced to get the delay time of the traffics fairly. The network congestion information from cell scheduler is used to control the predicted traffic loss rate of Neural Leaky Bucket, and token generation rate is changed by the predicted values. The prediction of traffic loss rate by neural networks can effectively reduce the cell loss rate and the cell transfer delay of next incoming cells and be applied to other traffic control systems. Computer simulation results performed for traffic prediction show that QoSs of the various kinds of traffics are increased.

  • PDF

A buffer readout scheduling for ABR traffic control (ABR 트랙픽 제어를 위한 버퍼 readout 스케쥴링)

  • 구창회;이재호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.25-33
    • /
    • 1997
  • The end-to-end rate-based control mechanism is used for the flow control of the ABR service to allow much more flexibility in ATM switching system. To accommodate the ABR service effciently many algorithms such as EFCI, EPRCA, ERICA, and CAPC2 have been proposed for the switch algorithm. ABR cells and related RM cells are received at the ATM switch fabric transparently without any processing. And then cells received from the traffic source are queued in the ABR buffer of switching system. The ABR buffer usually has some thresholds for easy congestion control signal transmission. Whatever we use, therefore, these can be many ABR traffic control algorithms to implement the ABR transfer capability. The genertion of congestion indicate signal for ABR control algorithms is determined by ABR buffer satus. And ABR buffer status is determined by ABR cells transfer ratio in ATM switch fabrics. In this paper, we presented the functional structures for control of the ABR traffic capability, proposed the readout scheduling, cell slot allocation of output link and the buffer allocation model for effective ABR traffic guranteeing with considering CBR/VBR traffics in ATM switch. Since the proposed readout scheduling scheme can provide more avaliable space to ABR buffer than existing readout scheduling scheme, generation rate of a SEND signal, that is, BCN signal in destination node can be increased for ABR call connection. Therefore, the proposed scheme, in this paper, can be appropriate as algorithm for effective ABR traffic service on output link of ATM switching node.

  • PDF

A Transfer Rate-Based Congestion Control Algorithm for ABR Service in ATM Networks (ATM 망에서 ABR 서비스를 위한 전송률 기반 폭주 제어 알고리즘)

  • Cho, Sung-Goo;Cho, Sung-Hyun;Oh, Yoon-Tak;Park, Sung-Han
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.28-34
    • /
    • 1998
  • In ATM networks CBR data traffic is sent in constant bit rate, and VBR data traffic in variable bit rate. Therefore unused bandwidth at network capacity may exist. To avoid waste of network resourcesm, ABR traffic utilizes the unused bandwidth to the utmost after CBR and VBR data traffic being first served. In this paper, a transfer rate-based congestion control algorithm is proposed for efficient ABR service in ATM networks. In the proposed algorithm the ATM switch first calculates bandwidth according to variable cell transfer rate in an ABR source. records this value in ER field in a RM cell, and then transmits a RM Cell to an ABR source. In this way the proposed algorithm dynamically allocates bandwidth to each ABR source, and the switch also can rapidly adapt to a change of a transfer rate of an source. The performance simulation of the proposed algorithm has batter performance in terms of source condition and link utilization.

  • PDF

Analysis of a relative rate switch algorithm for the ABR service in ATM networks (ATM망에서 ABR서비스를 위한 Relative Rate 스위치 알고리즘의 성능 해석)

  • 김동호;조유제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1384-1396
    • /
    • 1998
  • This paper ivestigates the performance of a relative rate (RR) switch algorithm for the rate-based available bit rate (ABR) flow control in asynchronous transfer mode (ATM) networks. A RR switch may notify the network congestion status to the source by suing the congestion indication (CI) bit or no increase (NI)bit in the backward RM (BRM) cells. A RR switch can be differently implemented according to the congestion detectio and notification methods. In this paper, we propose three implementation schemes for the RR switch with different congestion detection and notification methods, and analyze the allowed cell rate (ACR) of a source and the queue length of a switch in steady state. In addition, we derive the upper and lower bounds for the maximum and minimum queue lengths for each scheme respectively, and evaluate the effects of the ABR parameter values on the queue length. Furthermore, we suggest the range of the rage increase factor (RIF) and rate decrease factor (RDF) parameter values which can prevent buffer overflow and underflow at a switch.

  • PDF

Congestion Control Scheme for Multimedia Traffic over ATM ABR Service

  • Kim, Jung-Youp;Lee, Sang-Heok;Park, Young-Bok
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.525-528
    • /
    • 2000
  • According to the development of B-ISDN on ATM network, the uses of Multimedia service is growing. Although ABR service uses the network resource most effectively because it is able to change the transfer rate, it is not used for multimedia service until recently. In this paper, we set priority queue and non-priority queue in the ATM switch and each queue has threshold so is can be adopted in different transfer rate method. We propose the real-time traffic transfer method over ABR service based on an effective traffic control method.

  • PDF