• Title/Summary/Keyword: Transfer orbit

Search Result 154, Processing Time 0.026 seconds

Interface on ground station to shorten the delivery time for archiving order for satellite images (획득영상 배포시간 단축을 위한 지상국 인터페이스)

  • Myung-Jun Lee;Gap-Ho Jeon;Myeong-Shin Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.34-40
    • /
    • 2024
  • Satellite images from Earth-orbit satellites are widely utilized in both the public sector and commercial industry. To achieve a high-quality satellite image service, satellite operation focuses on accurately transmitting images and information of space to users. In particular, the delivery time from ground system to user is the core factor of the quality of a ground station service. Thus, much development is underway to specifically shorten the time required for distribution to users. In this paper, we introduce an interface design of a ground station to shorten the delivery time from order to distribution, related to the archiving order of satellite images.

Enhancing Installation Security for Naval Combat Management System through Encryption and Validation Research

  • Byeong-Wan Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.121-130
    • /
    • 2024
  • In this paper, we propose an installation approach for Naval Combat Management System(CMS) software that identifies potential data anomalies during installation. With the popularization of wireless communication methods, such as Low Earth Orbit(LEO) satellite communications, various utilization methods using wireless networks are being discussed in CMS. One of these methods includes the use of wireless network communications for installation, which is expected to enhance the real-time performance of the CMS. However, wireless networks are relatively more vulnerable to security threats compared to wired networks, necessitating additional security measures. This paper presents a method where files are transmitted to multiple nodes using encryption, and after the installation of the files, a validity check is performed to determine if there has been any tampering or alteration during transmission, ensuring proper installation. The feasibility of applying the proposed method to Naval Combat Systems is demonstrated by evaluating transmission performance, security, and stability, and based on these evaluations, results sufficient for application to CMS have been derived.

An Efficient Data Processing Method to Improve the Geostationary Ocean Color Imager (GOCI) Data Service (천리안 해양관측위성의 배포서비스 향상을 위한 자료 처리 효율화 방안 연구)

  • Yang, Hyun;Oh, Eunsong;Han, Tai-Hyun;Han, Hee-Jeong;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • We proposed and verified the methods to maintain data qualities as well as to reduce data volume for the Geostationary Ocean Color Imager (GOCI), the world's first ocean color sensor operated in geostationary orbit. For the GOCI level-2 data, 92.9% of data volume could be saved by only the data compression. For the GOCI level-1 data, however, just 20.7% of data volume could be saved by the data compression therefore another approach was required. First, we found the optimized number of bits per a pixel for the GOCI level-1 data from an idea that the quantization bit for the GOCI (i.e. 12 bit) was less than the number of bits per a pixel for the GOCI level-1 data (i.e. 32 bit). Experiments were conducted using the $R^2$ and the Modulation Transfer Function (MTF). It was quantitatively revealed that the data qualities were maintained although the number of bits per a pixel was reduced to 14. Also, we performed network simulations using the Network Simulator 2 (Ns2). The result showed that 57.7% of the end-toend delay for a GOCI level-1 data was saved when the number of bits per a pixel was reduced to 14 and 92.5% of the end-to-end delay for a GOCI level-2 data was saved when 92.9% of the data size was reduced due to the compression.

Environmental Test Results of a Flight Model of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 소형영상분광기 발사모델 환경시험 결과)

  • Lee, Sang-Jun;Kim, Jung-Hyun;Lee, Jun-Ho;Lee, Chi-Won;Jang, Tae-Sung;Kang, Kyung-In
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.184-190
    • /
    • 2011
  • A compact imaging spectrometer (COMIS) was developed for a microsatellite STSAT-3. The satellite is now rescheduled to be launched into a low sun-synchronous Earth orbit (~700 km) by the end of 2012. Its main operational goal is the imaging of the Earth's surface and atmosphere with ground sampling distance of 27 m and 2 - 15 nm spectral resolution over visible and near infrared spectrum (0.4 - 1.05 ${\mu}m$). A flight model of COMIS was developed following an engineering model that had successfully demonstrated hyperspectral imaging capability and structural rigidity. In this paper we report the environmental test results of the flight model. The mechanical stiffness of the model was confirmed by a small shift of the natural frequency i.e., < 1% over 10 gRMS random vibration test. Electrical functions of the model were also tested without showing any anomalies during and after vacuum thermal cycling test with < $10^{-5}$ torr and $-30^{\circ}C\;-\;35^{\circ}C$. The imaging capability of the model, represented by a modulation transfer function (MTF) value at the Nyquist frequency, was also kept unvaried after all those environmental tests.

CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris (근접촉쌍성 XZ CMi의 CCD 측광관측과 광도곡선 분석)

  • Kim, Chun-Hwey;Park, Jang-Ho;Lee, Jae-Woo;Jeong, Jang-Hae;Oh, Jun-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.141-156
    • /
    • 2009
  • Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of $-5.26{\times}10^{-11}d/P$ was interpreted as a result of simultaneous occurrence of both a period decrease of $-8.20{\times}10^{-11}d/P$ by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of $2.94{\times}10^{-11}d/P$ by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasing rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of $\dot{M}_s=3.21{\times}10^{-8}M_{\odot}y^{-1}$ from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of $\sum(O-C)^2$ between them. The diversity of mass ratios, with which previous investigators were in disagreement, still remains to be one of unsolved problems in XZ CMi system. Spectroscopic observations for a radial velocity curve and high-resolution spectra as well as a high-precision photometry are needed to resolve some of remaining problems.

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

Sensitivity Experiment of Surface Reflectance to Error-inducing Variables Based on the GEMS Satellite Observations (GEMS 위성관측에 기반한 지면반사도 산출 시에 오차 유발 변수에 대한 민감도 실험)

  • Shin, Hee-Woo;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • The information of surface reflectance ($R_{sfc}$) is important for the heat balance and the environmental/climate monitoring. The $R_{sfc}$ sensitivity to error-induced variables for the Geostationary Environment Monitoring Spectrometer (GEMS) retrieval from geostationary-orbit satellite observations at 300-500 nm was investigated, utilizing polar-orbit satellite data of the MODerate resolution Imaging Spectroradiometer (MODIS) and Ozone Mapping Instrument (OMI), and the radiative transfer model (RTM) experiment. The variables in this study can be cloud, Rayleigh-scattering, aerosol, ozone and surface type. The cloud detection in high-resolution MODIS pixels ($1km{\times}1km$) was compared with that in GEMS-scale pixels ($8km{\times}7km$). The GEMS detection was consistent (~79%) with the MODIS result. However, the detection probability in partially-cloudy (${\leq}40%$) GEMS pixels decreased due to other effects (i.e., aerosol and surface type). The Rayleigh-scattering effect in RGB images was noticeable over ocean, based on the RTM calculation. The reflectance at top of atmosphere ($R_{toa}$) increased with aerosol amounts in case of $R_{sfc}$<0.2, but decreased in $R_{sfc}{\geq}0.2$. The $R_{sfc}$ errors due to the aerosol increased with wavelength in the UV, but were constant or slightly decreased in the visible. The ozone absorption was most sensitive at 328 nm in the UV region (328-354 nm). The $R_{sfc}$ error was +0.1 because of negative total ozone anomaly (-100 DU) under the condition of $R_{sfc}=0.15$. This study can be useful to estimate $R_{sfc}$ uncertainties in the GEMS retrieval.

PERIOD CHANCE OF THE CONTACT BINARY AH Tauri (접촉쌍성 AH Tauri의 공전주기 변화)

  • Lee, Dong-Joo;Lee, Chung-Uk;Lee, Jae-Woo;Kim, Seung-Lee;Oh, Kyu-Dong;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.283-294
    • /
    • 2004
  • New BV RI photometric observations of the contact binary AH Tau were performed with the 61 cm reflector and a 2K CCD camera at the Sobaeksan Optical Astronomy Observatory during seven nights from September to December, 2001. A total of 144 times of minima observed up to date, including three times of minima obtained from our observation, were analyzed. It is found that the orbital period of AH Tau has varied in a cyclic way superposed on a secular period decrease. The rate of the secular period decrease is calculated to be $1^s$ .04 per century, implying that a mass of about $3.8{\times}10^{-8}M{\odot}/yr$ from the more massive primary flows into the secondary if a conservative mass transfer is assumed. Assuming that the sinusoidal period variation is produced by a light-time effect due to an unseen third body, the resultant semi-amplitude, period, and eccentricity for the deduced light-time orbit are obtained as 35.4 years, 0.014 day and 0.52, respectively. The mass of the third-body is calculated as a tout $0.24M{\odot}$ when the third body is assumed to be coplanar with AH Tau system.

WZ Cephei: A Dynamically Active W UMa-Type Binary Star

  • Jeong, Jang-Hae;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.163-172
    • /
    • 2011
  • An intensive analysis of 185 timings of WZ Cep, including our new three timings, was made to understand the dynamical picture of this active W UMa-type binary. It was found that the orbital period of the system has complexly varied in two cyclical components superposed on a secularly downward parabola over about 80y. The downward parabola, corresponding to a secular period decrease of $-9.{^d}97{\times}10^{-8}y^{-1}$, is most probably produced by the action of both angular momentum loss (AML) due to magnetic braking and mass-transfer from the massive primary component to the secondary. The period decrease rate of $-6.^{d}72{\times}10^{-8}y^{-1}$ due to AML contributes about 67% to the observed period decrease. The mass flow of about $5.16{\times}10^{-8}M_{\odot}y^{-1}$ from the primary to the secondary results the remaining 33% period decrease. Two cyclical components have an $11.^{y}8$ period with amplitude of $0.^{d}0054$ and a $41.^{y}3$ period with amplitude of $0.^{d}0178$. It is very interesting that there seems to be exactly in a commensurable 7:2 relation between their mean motions. As the possible causes, two rival interpretations (i.e., light-time effects (LTE) by additional bodies and the Applegate model) were considered. In the LTE interpretation, the minimum masses of $0.30M_{\odot}$ for the shorter period and $0.49M_{\odot}$ for the longer one were calculated. Their contributions to the total light were at most within 2%, if they were assumed to be main-sequence stars. If the LTE explanation is true for the WZ Cep system, the 7:2 relation found between their mean motions would be interpreted as a stable 7:2 orbit resonance produced by a long-term gravitational interaction between two tertiary bodies. In the Applegate model interpretation, the deduced model parameters indicate that the mechanism could work only in the primary star for both of the two period modulations, but could not in the secondary. However, we couldn't find any meaningful relation between the light variation and the period variability from the historical light curve data. At present, we prefer the interpretation of the mechanical perturbation from the third and fourth stars as the possible cause of two cycling period changes.

A PERIOD STUDY OF THE NEAR CONTACT BINARY EG CEP (근접촉쌍성 EG Cep의 공전주기 연구)

  • Kim Chun-Hwey;Jeong Jang-Hae;Lee Yong-Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.105-116
    • /
    • 2006
  • New eight times of minimum light of the near-contact binary EG Cep were presented. All times of minimum light for EG Cep, including ours, were collected and analyzed to study it's orbital period variation. It was found that the orbital period have varied in a cyclical way superposed on an upward parabola. A secular period increase of $3.22{\times}10^{-8}d/y$ was calculated. Under the assumption of a conservative mass transfer, it implied that the stellar gaseous material of about $3.18{\times}10^{-8}M_{\odot}$ /year is transferring from the less massive secondary component to the primary. The cyclical period variation was interpreted as light-time effect due to an unseen third body in the system. The resultant period, semi-amplitude and eccentricity of the light time orbit were calculated to be $38.^y4,\;0.^d0034$ and 0.29, respectively. The mass range of the tertiary proposed in the system is deduced to be quite small as $0.10M_{\odot}{\leq}M_3{\leq}0.21M_{\odot}$ for $i_3{\geq}30^{\circ}$.