• Title/Summary/Keyword: Transfer matrix

Search Result 883, Processing Time 0.024 seconds

Development of Monte Carlo Simulation Code for the Dose Calculation of the Stereotactic Radiosurgery (뇌 정위 방사선수술의 선량 계산을 위한 몬테카를로 시뮬레이션 코드 개발)

  • Kang, Jeongku;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.303-308
    • /
    • 2012
  • The Geant4 based Monte Carlo code for the application of stereotactic radiosurgery was developed. The probability density function and cumulative density function to determine the incident photon energy were calculated from pre-calculated energy spectrum for the linac by multiplying the weighting factors corresponding to the energy bins. The messenger class to transfer the various MLC fields generated by the planning system was used. The rotation matrix of rotateX and rotateY were used for simulating gantry and table rotation respectively. We construct accelerator world and phantom world in the main world coordinate to rotate accelerator and phantom world independently. We used dicomHandler class object to convert from the dicom binary file to the text file which contains the matrix number, pixel size, pixel's HU, bit size, padding value and high bits order. We reconstruct this class object to work fine. We also reconstruct the PrimaryGeneratorAction class to speed up the calculation time. because of the huge calculation time we discard search process of the ThitsMap and used direct access method from the first to the last element to produce the result files.

The Rheological Behaviors of Solid-Liquid Transfer Emulsion (고상-액상 전이형 에멀젼의 레올로지 거동)

  • Park, Byeong-Gyun;Han, Jong-Sub;Lee, Sang-Min;Lee, Cheon-Koo;Yoon, Moung-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.135-140
    • /
    • 2005
  • A solid state emulsion haying high velocity gradient shows two important transition ranges in the plot of storage modulus(G') as a function of shear strain, when the state is changed from solid to liquid. However, a solid state emulsion having low velocity gradient shows only one apparent transition range when the change from solid to liquid state takes place. The result implies the importance of the surface properties in the solid state emulsion. The addition of water phase in the solid state emulsion reduces the modulus in the modulus in the surface transition range by increasing interfacial friction and weakening the matrix. The addition of pigments increases the modulus in the modulus in the surface transition range by reinforcing the matrix, when there is no wafer phase in the solid state emulsion. When the solid state emulsion has water phase, however, the addition of pigments decreases the modulus in the modulus in the surface transition range.

Contribution analysis of underwater radiation noise source using partial coherence function (부분상관 함수를 이용한 수중방사소음 소음원 기여도 분석)

  • Kim, Tae Hyeong;Choi, Jae Yong;Oh, Jun Seok;Kim, Seong Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • In this paper, contribution analysis method using a partial coherence function is dealt with in the case of underwater radiation noise. When performing the contribution analysis using a partial coherence function, it is important to select the order of system input. But in the case of frequency correlated systems, it is very difficult to properly select the order of system input. In order to solve this problem, the contribution analysis is performed by subdividing the area of contribution using multiple coherence function. And the new contribution analysis method is presented by using the relationship between the contribution characteristic matrix and multiple coherence function. In order to validate the new method, calculation is performed about multi-input / single-output model which is composed of sine waves. The result of calculation shows that it is possible to derive the exact contribution values.

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

Zeolite Based Membrane for Removal of Ammonium: A Review (효소 고정화막의 응용에 대한 총설)

  • Lee, Joo Yeop;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2022
  • Presence of ammonia in drinking water is very toxic to human health. Soluble ammonia contaminates ground water due to activities such as the use of fertilizer in crop, industrial effluents and burning of fossil fuel. Even low concentration of ammonia present in water will damage aqua environment such as marine organism. Membrane technology is an important process to remove ammonia from effectively from water. Flat sheet membrane, membrane contactor and membrane distillation are some of the methods used for water purification from ammonia. Membrane contractor is an efficient process in which ammonia is removed through liquid-gas or liquid-liquid mass transfer without change of phase unlike membrane distillation. However, the cost of ammonia removal in this method is high due to maintenance of very high pH. Zeolite has excellent ion exchange ability that enhances its ability to interact with ammonia and adsorb from wastewater. Mixed matrix membranes containing zeolite enhance the efficiency of ammonia adsorption and separation from wastewater. In this review the above discussed issues are summarized in detail.

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

Resolving Memory Bottlenecks in Hardware Accelerators with Data Prefetch

  • Hyein Lee;Jinoo Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.1-12
    • /
    • 2024
  • Deep learning with faster and more accurate results requires large amounts of storage space and large computations. Accordingly, many studies are using hardware accelerators for quick and accurate calculations. However, the performance bottleneck is due to data movement between the hardware accelerators and the CPU. In this paper, we propose a data prefetch strategy that can efficiently reduce such operational bottlenecks. The core idea of the data prefetch strategy is to predict the data needed for the next task and upload it to local memory while the hardware accelerator (Matrix Multiplication Unit, MMU) performs a task. This strategy can be enhanced by using a dual buffer to perform read and write operations simultaneously. This reduces latency and execution time of data transfer. Through simulations, we demonstrate a 24% improvement in the performance of hardware accelerators by maximizing parallel processing with dual buffers and bottlenecks between memories with data prefetch.

Effect of Multi-wall Carbon Nanotube Surface Treatment on the Interface and Thermal Conductivity of Carbon Nanotube-based Composites (다중벽탄소나노튜브 복합재료의 계면 및 열전도도에 표면처리 방법이 미치는 영향)

  • Yoo, Gi-Moon;Lee, Sung-Goo;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.174-180
    • /
    • 2010
  • The effect of carbon nanotube surface treatment on the interface and thermal conductivity of carbon nanotube-based poly(methylmethacrylate) (PMMA) composites was investigated. Coagulation and atomic-transfer radical polymerization (ATRP) was applied to modify the surface of multi-wall carbon nano-tube. The composite of ATRP method used carbon nanotube showed the higher transparency and thermal conductivities than that of the coagulation method used. In comparison to the thermal conductivity of pure PMMA, 0.21 W/mK, the ATRP carbon nanotube used PMMA/MWNT composite showed a thermal conductivity of 0.38 W/mK. The interface between carbon nanotube and PMMA was observed by scanning electron microscope and uniform dispersion of carbon nanotube was observed without any void in the PMMA matrix. It may be beneficial to transport the phonon without any scattering and it may result in a higher thermal conductivity.

Impact of In-vitro Fertility and Matrix Metalloproteinases Activation of Spermatozoa by Supplement of Tea-N-Tris to Sperm Cryopreservation of Miniature Pig (미니돼지 정자 동결 보존에 Tea-N-Tris의 첨가가 체외 수정 및 MMPs 활성에 미치는 영향)

  • Kim, Sang-Hwan;Kang, Hyun-Ah;Park, Yong-Su;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • The main purpose of this study is to estimate the effect of adding Tea-N-Tris (TES) to the freezing buffer for miniature pig sperm. In particular, we attempted to identify the association between the MMPs expression and the fertility and viability of frozen sperm from each extender (LEY (Lactose Egg-Yolk), TLE (TES + LEY), TFGE (TES + Fructose + Glucose Egg-Yolk)). In accordance with this, Hypoosmotic Swelling Test (HOST) respond test was the lowest among sperms frozen in LEY while the highest HOST respond was observed among sperms frozen in TLE. Furthermore, we observed MMPs expression in all sperm groups, with pro-MMP showing lower expression than active MMPs. The expression of MMP-9 and MMP-2 was the highest in sperms frozen in LEY, Meanwhile, sperms from the TFGE and TLE group showed lower level of MMP-9 and MMP-2 expression in the order of TLE being the lowest. LEY group showed lower rate of blastocyst development than the TES supplement group, although the difference was not statistically significant. Meanwhile the rate of blastocyst development appeared similar when sperms from TLE and TFGE group were used for IVF. Together, these results indicate that adding Tea-N-Tris to the sperm freezing buffer only suppresses MMPs protein activation but also maximize in-vitro fertility, providing a means to improve the success rate in the in vitro manipulation of miniature pig sperm.