• Title/Summary/Keyword: Transfer film

Search Result 1,073, Processing Time 0.037 seconds

Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro Parallel Plate (마이크로 평판내 증발에 의한 확장초승달영역의 열/유동특성)

  • Park, Kyong-Woo;Noh, Kwan-Joong;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.476-483
    • /
    • 2003
  • A mathematical model is presented to predict the two-phase flow and heat transfer phenomena of the evaporating extended meniscus region in a micro-channel. The pressure difference at the liquid-vapor interface can be obtained by the augmented Laplace-Young equation. The correlative equations for film thickness, pressure, and velocity in the meniscus region are derived by applying the mass, momentum, and energy equations into the control volume. The results show that increasing the heat flux and the liquid inlet velocity cause the length and liquid film thickness of the extended meniscus region to decrease. The variation, however, of the heat flux and liquid inlet velocity has no effect on the profile of film thickness. The majority of heat is transferred through the thin film region that is a very small region in the extended meniscus region. It is also found that the vapor velocity increases gradually in the meniscus region. However, it increases sharply at the junction of the meniscus and thin film regions.

Electrical Properties of Molecular Diode Using Eicosanoic Acid Langmuir-Blodgett(LB) Monolayer Film (Eicosanoic Acid Langmuir-Blodgett(LB) 박막을 이용한 분자 다이오드의 전기적 특성)

  • Koo, Ja-Ryong;Lee, Ho-Sik;Kwon, Hyuck-Joo;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.148-153
    • /
    • 2003
  • Electron transfer through an Langmuir-Blodgett(LB) monolayer film sandwiched between metal electrodes. We used an eicosanoic acid material and the material was very famous as a thin film insulating material. Eicosanoic acid monolayer was deposited by Langmuir-Blodgett(LB) technique and a subphase was a $CdCl_2$ solution as a 2${\times}10^{-4}$ mol/L. Also we used a bottom electrode as an Al/$Al_2O_3$ and a top electrode as a Al and Ti/Al. Here, the $Al_2O_3$ on the bottom electrode was deposited by thermal evaporation method. The $Al_2O_3$ layer was acted on a tunneling barrier and insulating layer in tunnel diode. It was found that the proper transfer surface pressure for film deposition was 25 mN/m and the limiting area per molecule was about 24 ${\AA}^2$/molecule. When the positive and negative bias applied to the molecular device, the behavior shows that a tunnel switching characteristics. This result were analyzed regarding various mechanisms.

The Experimental Study on the Heat Transfer of HFC134a for Condensation Tubes with Various Enhanced Surfaces (응축전열관 외부형상 변화에 따른 HFC134a의 열전달 실험)

  • Park Chan-Hyoung;Lee Young-Su;Jeong Jin-Hee;Kang Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this paper are to study the characteristics of heat transfer for enhanced tubes (19.05 mm) used in the condenser with high saturation temperatures and to provide a guideline for optimum design of a condenser using HFC134a. Three different enhanced tubes are tested at a high saturation temperature of $59.8^{\circ}C$ (16 bar); a low-fin and three turbo-C tubes.. The refrigerant, HFC134a is condensed on the outside of the tube while the cooling water flows inside the tube. The film Reynolds number varies from 130 to 330. The wall subcooling temperature ranges from $2.7^{\circ}C$ to $9.7^{\circ}C$. This study provides experimental heat transfer coefficients for condensation on the enhanced tubes. It is found that the turbo-C(2) tube provides the highest heat transfer coefficient.

Transient cooling experiments with a cooper block in a subcooled flow boiling system (과냉비등류에 있어서 동블록을 이용한 과도적 냉각실험)

  • 정대인;김경근;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.72-79
    • /
    • 1987
  • When the wall temperature is very high, a stable vapor film covers the heat transfer surface. The vapor film creates a strong thermal resistance when heat is transferred to the liquid though it. This phenomenon, called "film boiling" is very important in the heat treatment of metals, the design of cryogenic heat exchangers, and the emergency cooling of nuclear reactors. In the practical engineering problems of the transient cooling process of a high temperature wall, the wall temperature history, the variation of the heat transfer coefficients, and the wall superheat at the rewetting points, are the main areas of concern. These three areas are influenced in a complex fashion such factors as the initial wall temperature, the physical properties of both the wall and the coolant, the fluid temperature, and the flow state. Therefore many kinds of specialized experiments are necessary in the creation of precise thermal design. The object of this study is to investigate the heat transfer characteristics in the transient cooling process of a high temperature wall. The slow transient cooling experiment was carried out with a copper block of high thermal capacity. The block was 240 mm high and 79 mm O.D.. The coolant flowed throuogh the center of a 10 mm diameter channel in the copper block. In the copper block, three sheathed thermocouples were placed in a line perpendicular to the flow. These thermocouples were used to take measurements of the temperature histories of the copper block.

  • PDF

Study on Film Boiling Heat Transfer of Spray Cooling in Air-Water Full Cone Spray System (물-공기 원추형 분무시스템에 있어서 분무냉각 막비등 열전달에 관한 연구)

  • Kim, Yeung-Chan;Yun, Seung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1236-1242
    • /
    • 2006
  • The local heat flux of spray cooling in the film boiling region were experimentally investigated for the spray region of $D_{max}$ = $0.005{\sim}0.03m^3/(m^2s)$. A twin-fluid full cone spray nozzle was employed for the experiment and the distributions of droplet flow rates were obtained for air-water full cone sprays. A stainless steel block was cooled down from initial temperature of about $800^{\circ}C$ by full cone spray. In the region near the stagnation point, it was found that the experimental data are in good agreement with the results predicted from the correlations between the local heat transfer and the local droplet flow rate proposed in the previous report. However, it was found that the experimental data of $D_r$ > $0.01m^3/(m^2s)$ are a little smaller than the results predicted from the correlations.

An Improved Heat Transfer Prediction Model for Turbulent Falling Liquid Films with or Without Interfacial Shear (계면 전단응력이 있을 때와 없을 때 하강하는 난류액막에 대한 개선된 열전달 예측 모델)

  • Park, Seok-Jeong;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.189-202
    • /
    • 1995
  • An improved method is presented for the prediction of heat transfer coefficients in turbulent fall-ing liquid films with or without interfacial shear for both heating or condensation. A modified Mudawwar and El-Masri's semi-empirical turbulence model, particularly to extend its use for the turbulent falling film with high interfacial shear, is used to replace the eddy viscosity model incorporated in the unified approach unposed by Yih and Liu. The liquid film thickness and asymptotic heat transfer coefficients against the film Reynolds number for wide range of interfacial shear predicted by both present and existing methods are compared with experimental data. The results show that in general, predictions of the modified model agee more closely with experimental data than that of existing models.

  • PDF

High temperature Friction and Wear of Friction Material; The Effect of the Relative Amount of Graphite and Zirconium Silicate (ZrSiO$_4$) (흑연과 지르콘의 상대적 함량에 따른 마찰재의 고온 마찰 및 마모특성)

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • Tribological behavior of novolac resin-based friction materials with three different relative amounts of graphite and zirconium silicate was investigated by using a pad-on-disk type friction tester. The goal of this paper is to examine the effects of the relative amount of a lubricant and an abrasive in the automotive friction material on friction and wear characteristics at elevated temperature. Friction and wear of friction materials were affected by the existence of transfer film(3$\^$rd/ body layer) at friction interface and the composition of friction material, especially lubricant amount. The friction material with higher content of graphite indicated homogenized and durable transfer film, and resulted in stable friction coefficient regardless of the increase in friction heat. The experimental result also showed that the higher concentration of ZrSiO$_4$ in friction material aggravated friction stability and wear resistance due to the higher friction heat generated at fiction interface during high temperature friction test.

A Numerical Model for Heat and Mass Transfer Processes within a Vertical Tube GAX Absorber (수직원관형 GAX 흡수기 내부의 열 및 물질전달과정에 대한 수치모델)

  • 천태식;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-111
    • /
    • 2000
  • A numerical model which simulates the simultaneous heat and mass transfer within a vertical tube GAX absorber was developed. The ammonia vapor and the solution liquid are in counter-current flow, and the hydronic fluid flows counter to the solution liquid. The film thickness and the velocity distribution of the liquid film were obtained by matching the shear stress at the liquid-vapor interface. Two-dimensional diffusion and energy equations were solved in the liquid film to give the temperature and concentration, and a modified Colburn-Drew analysis was used for the vapor phase to determine the heat and mass fluxes at the liquid-vapor interface. The model was applied to a GAX absorber to investigate the absorption rates, temperature and concentration profiles, and mass flow rates of liquid and vapor phases. It was shown that the mass flux of water was negligible compared with that of ammonia except the region near the liquid inlet. Ammonia absorption rate increases rapidly near the liquid inlet and decrease slowly. Both the absorption rate of ammonia vapor and the desorption rate of water near the liquid inlet increase as the vapor mass flow rate increases, but the mass fluxes of the ammonia and the water near the liquid outlet decrease as the mass flow rate of the vapor increases.

  • PDF

Comparison Study of the Modulation Transfer Function of a Prototype a-Se based Flat Panel Detector with Conventional Speed Class 400 Film/screen System (비정질 셀레늄을 이용한 직접방식의 디지털 방사선 검출기와 X-ray film과의 MTF측정을 통한 영상 질(quality) 비교평가에 관한 연구)

  • Park, Jang-Yong;Park, Ji-Koon;Kang, Sang-Sik;Moon, Chi-Woong;Lee, Hyung-Won;Nam, Sang-Hee
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.163-171
    • /
    • 2003
  • To evaluate the performance of the digital radiography(DR) system developed in our group, the modulation transfer function(MTF) was measured and compared with that of an analog X- ray detector, film/screen system. The DR system has an amorphous selenium(a-Se) layer vacuum-evaporated on a TFT flat panel detector. The speed class 400 film/screen (Fuji) system has been being used in the clinical field as analog X-ray detectors. Both the square wave and slit method were used to evaluate their MTF. The square method was applied to both film/screen and the DR system. The slit method, however, was applied to only DR system. The full-width half maximum resolution of film/screen was 357${\mu}{\textrm}{m}$(1.4 lp/mm at 50% spatial frequency), and the resolution of DR was limited to 200${\mu}{\textrm}{m}$(2.5 lp/mm at 30%). These results indicate the measured resolution limitations approximate to the pixel pitch, 139 ${\mu}{\textrm}{m}$ of TFT. The MTF of DR is higher than that of film/screen by the factor of 1.785. It is proved that our a-Se based DR system has potential usefulness in the clinical field.

Heat Transfer on Slot Film Cooling for Convergent Nozzle (축소노즐내 슬롯 막냉각에서의 열전달 특성)

  • 조용일;유만선;정학재;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.34-41
    • /
    • 2001
  • A study has been conducted to observe the slot film cooling effect on a convergent nozzle wall. The slot film cooling is used to protect the nozzle wall from the hot combusted gas by the coolant injected from the slot around the inner wall of the nozzle. The film cooling effectiveness and the heat transfer to the nozzle wall are influenced significantly by the blowing ratio of the coolant to the main flow and those are also influenced by the shape of the slot and the flow acceleration in the nozzle. In the present study, the heat transfer for the various blowing ratios has been performed by the experimental method and the results are compared with the results computed by the empirical formula. The numerical method has been conducted to compare the film cooling effectiveness of the convergent nozzle with that of the cylinder. For the relatively low blowing ratio, the cooling effectiveness increases sharply as the blowing ratio increases, and the increasing rate slows down for the high blowing ratio.

  • PDF