• 제목/요약/키워드: Transfer device

검색결과 1,124건 처리시간 0.03초

백시트 종류에 따른 태양전지 모듈의 방열 특성 평가 (Evaluation of Heat Transfer Characteristics of PV Module with Different Backsheet)

  • 배수현;오원욱;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.39-42
    • /
    • 2018
  • When the PV module is illuminated in a high temperature region, solar cells are also exposed to the high temperature external environment. The operating temperature of the solar cell inside the module is increased, which causes the power drops. Various efforts have been made to reduce the operating temperature and compensate the power of solar cells according to the outdoor temperature such as installing of a cooling system. Researches have been also reported to lower the operating temperature of solar cells by improving the heat dissipation properties of the backsheet. In this study, we conducted a test to measure the internal temperature of each module components and the external temperature when the light was irradiated according to the surrounding temperature. Backsheets with different thermal conductivities were compared in the test. Finally, in order to explain the temperature difference between the solar cell and the outside of the module, we proposed an evaluation method of the heat transfer characteristics of photovoltaic modules with different backsheet.

An Accurate Modeling Approach to Compute Noise Transfer Gain in Complex Low Power Plane Geometries of Power Converters

  • Nguyen, Tung Ngoc;Blanchette, Handy Fortin;Wang, Ruxi
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.411-421
    • /
    • 2017
  • An approach based on a 2D lumped model is presented to quantify the voltage transfer gain (VTG) in power converter low power planes. The advantage of the modeling approach is the ease with which typical noise reduction devices such as decoupling capacitors or ferrite beads can be integrated into the model. This feature is enforced by a new modular approach based on effective matrix partitioning, which is presented in the paper. This partitioning is used to decouple power plane equations from external device impedance, which avoids the need for rewriting of a whole set of equation at every change. The model is quickly solved in the frequency domain, which is well suited for an automated layout optimization algorithm. Using frequency domain modeling also allows the integration of frequency-dependent devices such inductors and capacitors, which are required for realistic computation results. In order to check the precision of the modeling approach, VTGs for several layout configurations are computed and compared with experimental measurements based on scattering parameters.

정사각 덕트 초임계 상태 이산화탄소 가스 냉각과정 중 2차 유동 특성 측정 연구 (Experimental Study on the Secondary Flow Characteristics of a Supercritical Carbon Dioxide Flow in a Gas Cooling Process Within a Square Duct)

  • 한성호;서정식;김용찬;김민수;최영돈
    • 대한기계학회논문집B
    • /
    • 제32권2호
    • /
    • pp.158-165
    • /
    • 2008
  • The carbon dioxide properties change sharply near the critical or pseudo-critical point in the heat transfer processes. The reduction in turbulent, convective heat transfer parameters observed in some supercritical data and in experiments with common gases can be due to property variation, acceleration, buoyancy or combinations of these phenomena, depending on the conditions of the applications. In this study, the measurement for the secondary flow driven by buoyancy was carried out on the supercritical carbon dioxide turbulent flows in the different boundary condition with the constant mass flow rate. The available measuring techniques were used to clarify the behaviour of any supercritical fluid. Laser Doppler Velocimeter (LDV) and a special device was used to measure the secondary velocity and turbulent characteristics of the supercritical flows.

Characteristic of the Formation and Adhesion of Ice on a Cooling Surface by a Stirring Aqueous Solution

  • Kang, Chae-Dong;Seung, Hyun;Hong, Hi-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권3호
    • /
    • pp.110-117
    • /
    • 2006
  • Ice adhesion or cohesion leads to the decrease of the performance of ice making system, especially to dynamic type ice thermal storage system (DISS) which mainly forms ice from the flow of an aqueous solution. The ice adhesion is influenced by various parameters associated with operating or geometric condition. In this study, the influence on an adhesion of ice to the characteristic of cooling surface and to composition of an aqueous solution was fundamentally observed by using batch type cooling device,. a beaker. Three patterns of solution in each beaker were cooled with brine. Moreover, the characteristic of cooling surface on each beaker was distinguished to coating materials. Stirring power as a degree of the ice adhesion was measured. The stirring power to cooling heat transfer rate in each beaker was compared. As a result, the lowest stirring power of 8.9 W with non-adhesion of ice, was shown in the case of the aqueous solution of EG(4) + PG(1.5) + 1,6HD(1.5). in PE coating beaker.

보텍스튜브 성능향상을 위한 유입노즐 조건에 관한 연구 (Inflow Nozzle Conditions for Improving Vortex Tube Performance)

  • 최훈기;유근종;임윤승
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.68-76
    • /
    • 2018
  • A vortex tube is a simple energy separating device that splits a compressed air stream into a cold and hot stream without any external energy supply or chemical reactions. The efforts of many researchers and designers have been focused on improvement of vortex tube efficiency by changing the parameters affecting vortex tube operation. The effective parameters are nozzle specifications and inflow pressure conditions. Effects of different nozzle cross-sectional area and number of nozzles are evaluated by computational fluid dynamics (CFD) analysis. In this study, CFD analysis of 3-D steady state and turbulent flow through a vortex tube was performed. We investigated the cold air mass flow rate, the cold air temperature, and the cold air heat transfer rate behavior of a vortex tube by utilizing seven straight nozzles and four inflow pressure conditions.

쿨링용 슬레트 핀 M/C Form Roll의 Roll Stand부 마찰 특성 (The Friction Characteristics of Roll Stand in the Cooling Slat Fin M/C)

  • 최원식;이성용;권주리;진은영;문희준;이인
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.52-55
    • /
    • 2010
  • This study investigates the friction of the roll stands in the high performance multi- holes slate fin machine which pin is using in heat transfer of radiator, oil cooler, inter cooler, condenser and evaporator. The roll stand part is very important to maintain the high performance fin machine. This multi-holes form roll type is the first time in our country so it will be helpful to increases the export and product of heat transfer. It was include the technical of form rolling system which was self development. Then it will be improve the electric home appliances, future motor vehicle device and industrial machine.

EXPERIMENTAL STUDY ON MEASUREMENT OF EMISSIVITY FOR ANALYSIS OF SNU-RCCS

  • CHO YUN-JE;KIM MOON OH;PARK GOON-CHERL
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.99-108
    • /
    • 2006
  • SNU-RCCS is a water pool type RCCS (Reactor Cavity Cooling System) developed for VHTR (Very High Temperature Reactor) application by SNU (Seoul National University). Since radiation heat transfer is the major process of passive heat removal in a RCCS, it is important to determine the precise emissivity of the reactor vessel. Review studies have used a constant emissivity in the passive heat removal analysis, even though the emissivity depends on many factors such as temperature, surface roughness, oxidation level, wavelength, direction, atmosphere conditions, etc. Therefore, information on the emissivity of a given material in a real RCCS is essential in order to properly analyze the radiation heat transfer in a VHTR. The objectives of this study are to develop a method for compensation of the factors affecting the emissivity measurement using an infrared thermometer and to estimate the true emissivity from the measured emissivity via the developed method, especially in the SNU-RCCS environment. From this viewpoint, we investigated factors such as the attenuation effect of the window, filling gas, and the effect of background radiation on the emissivity measurements. The emissivity of the vessel surface of the SNU-RCCS facility was then measured using a sight tube. The background radiation was subsequently removed from the measured emissivity by solving a simultaneous equation. Finally, the calculated emissivity was compared with the measured emissivity in a separate emissivity measurement device, yielding good agreement with the emissivity increase with vessel temperature in a range of 0.82 to 0.88.

발광층 내의 스페이서가 인광 OLED의 효율 및 발광 특성에 미치는 영향 (Effects of Spacer Inserted Inside the Emission Layer on the Efficiency and Emission Characteristics of Phosphorescent Organic Light-emitting Diodes)

  • 서유석;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제27권6호
    • /
    • pp.377-382
    • /
    • 2014
  • We have investigated the effects of spacer layer inserted between blue and red doped emission layers on the emission and efficiency characteristics of phosphorescent OLEDs. N,N'-di-carbazolyl-3,5-benzene (mCP) was used as a host layer. Iridium(III)bis[(4,6-di-fluorophenyl)- pyridinato-N,$C^2$']picolinate (FIrpic) and tris(1-phenyl-isoquinolinato-$C^2$,N)iridium(III) [Ir(piq)3] were used as blue and red dopants, respectively. The emission layer structure was mCP (1-x) nm/mCP:$Ir(piq)_3$ (5 nm, 10%)/mCP (x nm)/mCP:FIrpic (5 nm, 10%). The thickness of mCP spacer layer was varied from 0 to 15 nm. The emission from $Ir(piq)_3$ and the efficiency of the device were dominated by energy transfer from mCP host and FIrpic molecules, and by diffusion of mCP host triplet excitons.

NIR 흡수 염료를 이용한 염료감응형 태양전지 (Synthesis and Photovoltaic Performance of NIR Absorption Dyes for the Dye Sensitized Solar Cell)

  • 김상아;정미란;이민경;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.118.1-118.1
    • /
    • 2011
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of TiO2 are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

냉각된 종이의 잉크수리 문제에 관한 연구 (Ink Transfer Problem on a Cooled Paper)

  • 전성재;홍기안;윤종태
    • 한국인쇄학회지
    • /
    • 제26권1호
    • /
    • pp.87-96
    • /
    • 2008
  • Paper stock could be situated in a cooled environment seasonally and/or regionally otherwise it is stored in a controlled warehouse. In this paper, printing problems on a cooled paper are investigated and characterized in terms of paper properties. For this purpose, various kinds of sample are cooled down under a specially designed freezing device and printed for observing their printability. Causes for poor ink transfer on a cooled paper are suggested due to condensation, surface inactivity, and rheological change in ink film. Paperboards with higher amount of binder, thick and/or multi-coated layers are more vulnerable to poor ink trap. Severe drying of wet coating could cause a similar result as that of the coatings with higher binder formulation. It is shown that more absorptive porous structure is desirable for better ink receptivity in a cooled status. Printing on a dampened surface may be an indicator for ink transferability on a cooled paper. Finally, desirable directions for papermaker and printshop are suggested.

  • PDF