• Title/Summary/Keyword: Transfer concrete girder

Search Result 36, Processing Time 0.023 seconds

An Experimental Study on the shear connection for UHPC Deck Bridge (초고성능 콘크리트 바닥판 교량의 전단연결부에 대한 실험적 연구)

  • Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae;Park, Sung-Young
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.29-33
    • /
    • 2011
  • The application of high performance materials for the deck can represent a fair alternative to reduce the weight of the deck and improve the econimic efficiency of the bridge even if high performance materials are costly. In UHPC(Ultra High Performance Concrete) bridges, it is necessary to verify that exiting headed stud can be used to transfer longitudinal shear forces across the steel-concrete interface. In this paper, the push-out tests are performed to analisys the composite behavior between UHPC bridge deck and steel girder. The ultimate strength of test specimens is proportional to the diameter of headed studs in push-out test for static loading. Test results show that the shear strength of headed stud is improved for the case of normal concrete bridge decks.

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Analytical Method on PSC I Girder with Strengthening of External Tendon (외부강선으로 보강되는 PSC I 합성거더의 해석 기법)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.697-704
    • /
    • 2008
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering construction sequence, using unbonded tendon element and beam-column element based on flexibility method. Unbonded tendon model can represent unbounded tendon behavior in concrete of PSC structures and it can deal with the prestressing transfer of posttensioned structures and calculate prestressed concrete structures more efficiently. This tendon model made up the several nodes and segment, therefore a real tendon of same geometry in the prestressed concrete structure can be simulated the one element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The formulation of beam-column element is based on flexibility. Beam-column element and unbonded tendon element were be involved in A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), that were used the analysis of RC and PSC structures. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

Efficient Analysis of Shear Wall with Piloti (필로티가 있는 전단벽의 효율적인 해석)

  • 김현수;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.387-399
    • /
    • 2003
  • The box system that consists only of reinforced concrete walls and slabs we adopted in many high-rise apartment buildings recently constructed in Korea. Recently, many of the box system buildings with pilotis has been constructed to meet the architectural design requirements. This structure has abrupt change in the structural properties between the upper and lower parts divided by transfer girders. For an accurate analysis of a structure with pilotis, it is necessary to have the buildings modeled into a finer mesh. But it would cost tremendous amount of computational time and memory. In this study, an efficient method is proposed for an efficient analysis of buildings those have pilotis with drastically reduced time and memory. In the proposed analysis method, transfer gilders are modeled using super elements developed by the matrix condensation technique and fictitious beams are introduced to enforce the compatibility conditions at the boundary of each element. The analyses of example structures demonstrated that the proposed method used for the analysis of a structure with pilotis will provide analysis results with accuracy for the design of box system buildings.

Effect of Reinforcement for Web Opening on Shear Strength of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 전단 내력에 대한 개구부 보강 효과)

  • Lee, Jong-Kweon;Choi, Yun-Cheul;Lee, Yong-Taeg
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.699-708
    • /
    • 2007
  • Reinforced concrete deep beams are general structural members used as transfer-girder, pile cap, foundation wall and so on. They have a complex stess formation. Generally, failure mechanisms differ from either continuous deep beams or simple supported deep beams. In continuous deep beams, a negative moment is occurred over intermediate support and the location of maximum moment coincide with high shear force. Therefore, failure usually occurs at this region. While on the other hand, in simple supported deep beam, the region of high shear coincides with the region of low moment. The web opening of deep beams for accepting a facility makes shear behaviors of deep beams more complex and gives rise to an expansion of crack around the opening and a decline of shear capacity of deep beams. Therefore, Engineers must determine a delicate reinforcement method to control a crack and increase a shear capacity. The purpose of this report is a computation of an effective reinforcement method through non-linear finite element method by means of adopting various reinforcement method as variables and a computation of shear capacity formula taking an effectiveness of reinforcement into consideration.

An Experimental Study on Joint Structures of Composite Truss Bridges (복합 트러스 교량의 연결구조에 대한 실험적 연구)

  • Shim, Chang Su;Park, Jae Sik;Kim, Kwang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.303-312
    • /
    • 2007
  • Steel box girder bridges are being commonly designed for medium-span bridges of span length. Composite truss bridges with steel diagonals instead of concrete webs can be an excellent design alternative, because it can reduce the dead weight of superstructures. One of the key issues in the design of composite truss bridges is the joint structureconnecting the diagonal steel members with the upper and lower concrete slabs. Because the connection has to carry concentrated combined loads and the design provisions for the joint are not clear, it is necessary to investigate the load transfer mechanism and the design methods for each limit state. There are various connection details according to the types of diagonal members. In this paper, the joint structure with group stud connectors welded on a gusset plate is used. Push-out tests for the group stud connectors of were performed. The test results showed that the current design codes on the ultimate strength ofthe stud connection can be used when the required minimum spacing of stud connectors is satisfied. Flexure-shear tests were conducted to verify the applicability of the design provisions for combined load effects to the strength of joint structures. To increase the pullout strength of the connection, bent studs were proposed and utilized for the edge studs in the group arrangement of the joint. The results showed that the details of the joint structure were enhanced. Thereafter, design guidelines were proposed.