• 제목/요약/키워드: Transfer coefficient

검색결과 2,403건 처리시간 0.029초

자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구 (Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane)

  • 구학근
    • 동력기계공학회지
    • /
    • 제14권4호
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.

희박 분무영역에서의 분무냉각 막비등 열전달에 관한 연구 (Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region)

  • 김영찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1481-1486
    • /
    • 2004
  • This report presents experimental results on the heat transfer coefficients in the boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distribution of a two dimensional dilute spray impinging on hot plate was experimentally investigated. Based on the experimental results, they classified the heat transfer area into the stagnation region and wall-flow region. In the stagnation region, the local heat transfer coefficient relates mainly to the droplet-flow-rate supplied from spray nozzle directly, so the local heat transfer coefficients is good agreement with the predicted values from correlation for spray cooling proposed by former report However, the local heat transfer coefficient in wall-flow region is larger than predicted values, and it is found that the rebounding droplets-flow-rate must be accurately evaluated to predict the local heat transfer coefficient in this region.

  • PDF

일중 피복온실의 관류열전달계수 산정 (Estimation of Overall Heat Transfer Coefficient for Single Layer Covering in Greenhouse)

  • 황영윤;이종원;이현우
    • 생물환경조절학회지
    • /
    • 제22권2호
    • /
    • pp.108-115
    • /
    • 2013
  • 본 연구의 목적은 일중피복온실의 피복재에 대하여 우리나라 환경에 적합한 관류열전달계수를 산정하는 방법을 찾아내고 검증하여 다양한 온실조건 및 환경조건에서 관류열전달계수를 산정할 수 있는 모델을 제시하는 것이다. 온실내부 및 외부온도와 피복재 표면온도와의 상관관계를 분석한 결과 주간 및 야간 온도를 모두 고려하였을 때보다 야간온도만을 고려하였을 경우가 상관성이 훨씬 더 높은 것으로 나타났다. 피복재의 표면온도가 온실의 외부온도보다는 내부온도와 상관성이 더 높은 것으로 나타났다. 관류열전달계수를 산정하는데 사용된 5가지 종류의 대류 및 복사열전달계수 산정식을 비교한 결과 Kittas가 제안한 대류 및 복사열전달계수 산정식이 가장 적합한 것으로 나타났다. 피복재 표면온도의 측정값과 계산 값의 상관성을 분석한 결과 직선의 기울기는 1.009이고 절편은 0.001이며 결정계수가 0.98로 나타나 본 연구에서 제시된 관류열전달계수 산정모델이 신뢰성이 있음을 확인할 수 있었다. 온실내부로부터 피복재 내부표면으로 전달되는 열흐름량의 경우 모든 풍속구간에 대해 대류열전달량이 복사열전달량보다 더 컸으며 풍속이 증가할수록 그 차이가 증가하였다. 외부표면에서 손실되는 열흐름량의 경우 풍속이 낮을 때에는 대류열전달량에 비해 복사열전달량이 더 컸으나 풍속이 증가함에 따라 그 차이는 점점 줄어들어 풍속이 높을 때에는 대류열전달량이 더 커지는 것으로 나타났다. 피복재 외부 표면의 대류열전달량은 내부표면의 대류열전달량에 직선적으로 비례하여 증가하는 것으로 나타났다. 풍속이 증가함에 따라 관류열전달계수는 증가하고 피복재의 표면 온도는 감소하는 것을 확인할 수 있었고, 변화추세를 보면 관류열전달계수는 거듭제곱함수와 그리고 표면온도는 로그함수와 잘 일치하였다.

응고중 구리 주형과 알루미늄 용탕의 계면열전달계수에 미치는 용탕과열도와 도형재의 영향 (Effects of Superheat and Coating Layer on Interfacial Heat Transfer Coefficient between Copper Mold and Aluminum Melt during Solidification)

  • 김희수;신제식;이상목;문병문
    • 한국주조공학회지
    • /
    • 제24권5호
    • /
    • pp.281-289
    • /
    • 2004
  • The present study focused on the estimation of the interfacial heat transfer coefficient as a function of the surface temperature of the aluminum casting at the mold/casting interface to investigate the effects of superheat and coating layer. The casting experiments of aluminum into a cylindrical copper mold were systematically conducted to obtain the thermal history during solidification. The thermal history recorded by four thermocouples embedded both in the mold and the casting was used to solve the inverse heat conduction problem using Beck's method. The effects of superheat and coating on the interfacial heat transfer coefficient in the liquid state, during the solidification, and in the solid state were comparatively discussed. In the liquid state, the interfacial heat transfer coefficient is thought to be affected by the roughness of the mold, the wettability of the casting on the mold surface, and the thermophysical properties of the coating layer. When the solidification begins, the air gap forms between the casting and the mold, and the interfacial heat transfer coefficient becomes a function of the air gap as well as surface roughness and the superheat. In the solid phase, it depends only upon the thermal conductivity and the thickness of the air gap. The coating layer reduces seriously the interfacial heat transfer coefficient in the liquid state and during the solidification.

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An experimental study on cooling characteristics of mist impinging jet on a flat plate)

  • 전상욱;정원석;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.528-533
    • /
    • 2001
  • An experimental study is carried out to investigate the effects of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. Experiments are conducted with air mass flow rates from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used for the purpose of controlling air and water mass flow rates. In this study, a new test section is designed to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases, and that the increases in water flow rate mainly enhance cooling performance. Air mass flow rate weakly influences averaged heat transfer coefficient when water mass flow rate is low, but averaged heat transfer coefficient increases remarkably as air mass flow rate in case of high water mass flow rate.

  • PDF

수평관내 $CO_2$의 초임계 영역내 열전달에 관한 연구 (The heat transfer characteristics of supercritical $CO_2$ in a horizontal tube)

  • 오후규;이동건;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.526-532
    • /
    • 2005
  • The cooling heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter. a pre-heater and gas cooler(test section). The test section consists of a smooth, horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $400\;kg/m^{2}s$ and the inlet cooling pressure of 7.5 MPa to 10.0 MPa. The variation of heat transfer coefficient tends to decrease as cooling pressure of $CO_2$ increases. The heat transfer coefficient with respect to mass flux increases as mass flux increases. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with that predicted by Blasius's correlation. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Bringer-Smith.

수평관과 헬리컬 코일관내 이산화탄소의 냉각 열전달 특성 (Cooling Heat Transfer Characteristics of Carbon Dioxide in a Horizontal and Helically Coiled Tube)

  • 손창효
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.121-126
    • /
    • 2008
  • The cooling heat transfer coefficient of $CO_2$ (R-744) in a horizontal and helically coiled tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, evaporator and gas cooler (test section). The test section consists of a horizontal stainless steel tube and hellically coiled copper tube of 4.57 and 7.75 mm. The experiments were conducted at saturation temperature of 100 to $20^{\circ}C$, and mass flux of 200 to $500kg/m^2s$. The test results showed the variation of the heat transfer coefficient tended to decrease as cooling pressure of $CO_2$ increased. The heat transfer coefficient with respect to mass flux increased as mass flux increased. The experimental results were also compared with the existing correlations for the supercritical heat transfer coefficient, which generally underpredicted the measured data. However, the experimental data showed a relatively good agreement with the correlations of Pitla et al. except for the pseudo critical temperature.

유동층 연소로 내에서 수평 휜 전열관의 열전달 특성에 관한 실험적 연구 (An Experimental study on Heat Characteristics of Horizontal Tubes with Fin in Fluidized Bed Combustor)

  • 강형수;정태용
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.19-29
    • /
    • 1996
  • This study is to investigate the characteristics of heat transfer of a horizontal tube, with radial fins of various configuration, immersed in a high temperature fluidized bed. The experimental heat transfer variation is compared with that of a smooth tube. The finned tubes and smooth tube, with outside and inside diameter of 48.6mm and 30.6mm, are made of steel tubes. The depth of the fin is 5mm, the rake angles of fin are $25^{\circ},\;35^{\circ},\;45^{\circ}$ and the widthes of fin for each rake angle are 0mm, 1mm, 2mm and 3mm. A bed temperature is fixed at $880\;{\pm}\;10^{\circ}C$. A granular refractory(silica sand) is used as a bed material with mean particle diameters of 1.22mm and 1.54mm. The maximum heat transfer coefficient is achieved with the rake angle of $25^{\circ}$ and the width of 0mm for the mean particle size 1.22mm. The coefficient is 2.14 times larger than that for a smooth tube. The rake angle for the maximum heat transfer coefficient depends on the particle size of bed material. Also the transfer coefficient decreases as the width of fin increases.

  • PDF

프로필렌 냉매의 증발열전달 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer Characteristics of Evaporation using Propylene Refrigerant)

  • 이호생;김재돌;정석권;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.754-761
    • /
    • 2004
  • In this paper, evaporating heat transfer characteristics in the refrigeration and air-conditioning facilities were studied using the environmentally friendly refrigerants R-1270 (Propylene). R-290 (Propane). R-600a (Iso-butane) and HCFC refrigerant R-22 The test tube was surrounded by an annulus with water flowing counter to the refrigerant. The tube is copper. with an outside diameter of 12.7mm and the wall thickness of 1.315mm. The test results showed that the local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22 Comparing the heat transfer coefficient of experimental results with that of other correlations. the presented results had agood agreement with the Kandlikar's correlation. This results form the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

R-410A 비등열전달에 미치는 미세관경 0.5mm와 3.0mm의 영향 (Flow Boiling Heat Transfer of R-410A in 0.5mm & 3.0mm Diameter Horizontal Tube)

  • ;최광일;오종택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.154-159
    • /
    • 2008
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$, a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficient is compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

  • PDF