• 제목/요약/키워드: Transfer Type

검색결과 2,815건 처리시간 0.031초

수치해석에 의한 TUBE-AND-PLATE형 응축기의 판 형태 및 입구 형상변화에 따른 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics of Tube-and-Plate Condenser with Different Plate Shapes and Inlet Geometries using Numerical Analysis)

  • 최우진;권오붕;임희창;김명관;이연수
    • 동력기계공학회지
    • /
    • 제13권2호
    • /
    • pp.49-55
    • /
    • 2009
  • Recently, a study on condensers for refrigerators has focused on new model which will cost less and will be more efficient. Some widely used condensers for domestic refrigerators are wire-and-tube type condenser, hot-wall type condenser, and spiral type condenser. Some companies which use the spiral type condenser at the moment try to develop a new tube-and-plate type condenser which will cost less and will be as efficient as the spiral type. As a standard condenser type, tube-and-plate type condenser is used in this study. A two-dimensional numerical model for the tube-and-plate type condenser is proposed, and the flow and heat transfer characteristics for several types of condensers are investigated.

  • PDF

마이크로 채널 관에서의 응축 열전달 성능에 관한 연구 (A study on condensation heat transfer performance in microchannel tube)

  • 이정근
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.22-29
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer by using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat transfer coefficient. The condensation heat transfer coefficient showed an increase as the vapor quality and mass flux increased. However, each tube shows little differences compared to 400kg/m2s or identical in case the mass flux are 200kg/m2s and 100kg/m2s. The major reason for these factors is increase-decrease of heat transfer area that the flux type of refrigerant is exposed to the coolant's vapor with the effect of channel aspect ratio or micro-fin. In addition, the heat transfer coefficient was unrelated to the heat flux, and shows a rise as the saturation temperature gets lower, an effect that occurs from enhanced density. The physical factor of heat transfer coefficient increased as the channel's aspect ratio decreased. Additionally, the micro pin at the multi-channel type tube is decided as a disadvantageous factor to condensation heat enhancement factor. That is, due to the effect of aspect ratio or micro-fin, the increase-decrease of heat transfer area that the flux type of a refrigerant is exposed to the vapor is an important factor.

역열전달해석기법에 의한 LED 조명용 무동력 냉각사이클링 방열기 성능평가 (Performance Evaluation of a Thermo Siphon Type Radiator for LED Lighting System by using an Inverse Heat Transfer Method)

  • 김은희;김흥규;서광석;이민규;조종두
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.473-478
    • /
    • 2011
  • In this study, the performance of a thermo siphon type radiator made of copper for LED lighting system was evaluated by using an inverse heat transfer method. Heating experiments and finite element heat transfer analysis were conducted for three different cases. The data obtained from experiments were compared with the analysis results. Based on the data obtained from experiments, the inverse heat transfer method was used in order to evaluate the heat transfer coefficient. First, the heat transfer analysis was conducted for non-vacuum state, without the refrigerant. The evaluated heat transfer coefficient on the radiator surface was 40W/$m^2^{\circ}C$. Second, the heat transfer analysis was conducted for non-vacuum state, with the refrigerant, resulting in the heat transfer coefficient of 95W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$ for the radiator body, 5W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant for the rising position of radiator pipe, 35W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the highest position of radiator pipe, and 120W/$m^2^{\circ}C$ for the downturn position of radiator pipe. As a result of inverse heat transfer analysis, it was confirmed that the thermal performance of the current radiator was best in the case of the vacuum state using the refrigerant.

운전조건 변화에 따른 루버휜 열교환기 성능변화에 관한 실험적 연구 (An Experimental Study on the Performance of the Louver Fin Type Heat Exchanger by the Change of the Driving Condition)

  • 김정국;소산번;상원헌;김동휘;박병덕
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.440-445
    • /
    • 2008
  • The present study was investigated the effect of the driving condition on the performance of a louver fin and tube type heat exchanger under frosting condition. Heat transfer rate and pressure drop by frost were experimentally investigated. Effects of the wet blub temperature and the shape of a fin on heat transfer performances has been also investigated. The key parameters were fin type(louver and corrugate fin) and the wet blub temperature of air (0.5, 1.0, $1.5^{\circ}C$). The heat transfer performance of the louver fin and tube type heat exchanger was higher by 0.89% than the corrugate fin type. As the wet blub temperature of air were increased, the heat transfer rate, pressure drop and mass of frost of three test models(Type A, B, C) were increased. Especially, the maximum heat transfer rate and maximum pressure drop were shown for the louver fin and tube type heat exchanger. As a experimental result, the enhancement factor(EF) of louver fin and tube type heat exchanger was $0.2{\sim}0.4$ due to the high pressure drop.

  • PDF

전송 게이트가 내장된 Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor 구조 광 검출기를 이용한 감도 가변형 능동 화소 센서 (Adjusting the Sensitivity of an Active Pixel Sensor Using a Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor-Type Photodetector With a Transfer Gate)

  • 장준영;이제원;권현우;서상호;최평;신장규
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.114-118
    • /
    • 2021
  • In this study, the sensitivity of an active pixel sensor (APS) was adjusted by employing a gate/body-tied (GBT) p-channel metal-oxide semiconductor field-effect transistor (PMOSFET)-type photodetector with a transfer gate. A GBT PMOSFET-type photodetector can amplify the photocurrent generated by light. Consequently, APSs that incorporate GBT PMOSFET-type photodetectors are more sensitive than those APSs that are based on p-n junctions. In this study, a transfer gate was added to the conventional GBT PMOSFET-type photodetector. Such a photodetector can adjust the sensitivity of the APS by controlling the amount of charge transmitted from the drain to the floating diffusion node according to the voltage of the transfer gate. The results obtained from conducted simulations and measurements corroborate that, the sensitivity of an APS, which incorporates a GBT PMOSFET-type photodetector with a built-in transfer gate, can be adjusted according to the voltage of the transfer gate. Furthermore, the chip was fabricated by employing the standard 0.35 ㎛ complementary metal-oxide semiconductor (CMOS) technology, and the variable sensitivity of the APS was thereby experimentally verified.

착상에 의한 휜관형 열교환기의 성능변화에 관한 실험적 연구 (Experimental Study on the Performance Change of the Fin and Tube Type Heat Exchanger by the Frosting)

  • 김정국;소산번;상원헌;박병덕;김동휘;사용철
    • 설비공학논문집
    • /
    • 제21권2호
    • /
    • pp.79-86
    • /
    • 2009
  • The present study was investigates the effect of the parameters on the frost formation and heat transfer performance such as fin shape, air temperature and air velocity. Heat transfer rate and pressure drop by frost were experimentally investigated. Effect of the wet blub temperature and air velocity on the heat transfer performance has been also investigated. The heat transfer performance of the louver fin and tube type heat exchanger was higher by maximum of 0.85% than the corrugate fin type at the air temperature of $2.0/1.5^{\circ}C$. As the wet blub temperature of air were increased, the heat transfer rate, pressure drop and mass of frost of three test models were increased. Especially, the maximum heat transfer rate and maximum pressure drop were shown for the Type B louver fin heat exchanger. As an experimental result, the enhancement factor(EF) of louver fin and tube type heat exchanger was only $0.2{\sim}0.4$ due to the high pressure drop.

판형 열교환기식 제습기에서 LiCl 수용액의 열 및 물질전달 특성 (Heat and Mass Transfer Characteristics of LiCl Aqueous Solution for a Plate Heat Exchanger Type Dehumidifier)

  • 전동순;이해승;김선창;김영률
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.16-22
    • /
    • 2012
  • Experimental investigations were carried out to examine the heat and mass transfer characteristics of LiCl aqueous solution for a plate heat exchanger type dehumidifier. Cooling dehumidification was adopted vertical type heat exchanger. Also non woven fabric is attached surface of the heat exchanger for spreadability of LiCl aqueous solution. Mass flow-rate of LiCl aqueous solution and concentration were selected as experimental conditions. Also, In this study, the effects of relative humidity of process air and velocity were investigated experimentally. As a result of heat transfer coefficient and mass transfer coefficient of were increased film reynolds number increased. heat transfer coefficient and mass transfer coefficient of LiCl aqueous solution were 0.14~0.24 kW/$m2^{\circ}C$ and $1.3{\times}10-63{\sim}6.2{\times}10-6$ m/s respectively.

대형 산업 차량에 적용되는 유성기어형 고감속 중간변속기 구현에 관한 연구 (A Study on the Embodiment of a Transfer Case with High-Speed Reduction of the Planetary Gear Type Applied to Big Industrial Vehicles)

  • 이원규;박세명
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.14-20
    • /
    • 2015
  • A high-speed reduction transfer case is usually employed by an excavator, wheel loader, or bulldozer. When powerful torque is required in the case of climbing steep roads or towing heavy equipment, the high-speed reduction mode of the gearbox is used. Generally, a transfer case using a spur gear type with a speed reduction system has a speed reduction ratio of 1 to 1 or 2 to 1. However, the structure of a transfer case achieved at a high speed of 1 to 1 and a low speed of 4.5 or under 5.5 to 1 with the speed reduction by use of a planetary gear type with a speed reduction system was proposed in this study. By employing a planetary gear type with a speed reduction system, the compact structure of the transfer case was achieved, and the impact or the partial defect of gear teeth was eliminated.

A Numerical Study on Heat Transfer and Friction in Rectangular Channel with Inclined Perforated Baffles

  • Putra, Ary Bachtiar Krishna;Ahn, Soo-Whan;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권7호
    • /
    • pp.1003-1012
    • /
    • 2008
  • A three dimensional numerical study has been applied to predict the turbulent fluid flow and heat transfer characteristics for the rectangular channel with different types of baffles. Four different types of the baffles are used. The inclined baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of $5^{\circ}$. Reynolds number is varied between 23,000 and 57,000. The SST k-${\omega}$ turbulence model is used in the present numerical study. The validity of the numerical results is examined with the experimental data. The numerical results of the flow field depict that the flow patterns around the different baffle type are entirely different and it significantly affects the local heat transfer characteristics. The heat transfer and friction factor depend significantly on the number of baffle holes. It is found that the heat transfer enhancement of baffle type II (3 hole baffle) has the best values.

다공성 매질의 형상 변화에 따른 접시형 고온 태양열 흡수기의 열성능 평가 (Heat Transfer Analysis of High Temperature Dish-type Solar Receiver with the Variation of Porous Material)

  • 이주한;서주현;오상준;이진규;조현석;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.238-244
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Using the numerical model, the heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF